// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "lite/api/lite_api_test_helper.h" #include "lite/api/paddle_api.h" #include "lite/api/paddle_use_kernels.h" #include "lite/api/paddle_use_ops.h" #include "lite/api/paddle_use_passes.h" #include "lite/api/test_helper.h" #include "lite/tests/api/ILSVRC2012_utility.h" #include "lite/utils/cp_logging.h" DEFINE_string(data_dir, "", "data dir"); DEFINE_int32(iteration, 100, "iteration times to run"); DEFINE_int32(batch, 1, "batch of image"); DEFINE_int32(channel, 3, "image channel"); namespace paddle { namespace lite { TEST(MobileNetV2, test_mobilenetv2_fp32_huawei_kirin_npu) { lite_api::CxxConfig config; config.set_model_dir(FLAGS_model_dir); config.set_valid_places({lite_api::Place{TARGET(kARM), PRECISION(kFloat)}, lite_api::Place{TARGET(kNPU), PRECISION(kFloat)}}); auto predictor = lite_api::CreatePaddlePredictor(config); std::string raw_data_dir = FLAGS_data_dir + std::string("/raw_data"); std::vector input_shape{ FLAGS_batch, FLAGS_channel, FLAGS_im_width, FLAGS_im_height}; auto raw_data = ReadRawData(raw_data_dir, input_shape, FLAGS_iteration); int input_size = 1; for (auto i : input_shape) { input_size *= i; } for (int i = 0; i < FLAGS_warmup; ++i) { auto input_tensor = predictor->GetInput(0); input_tensor->Resize( std::vector(input_shape.begin(), input_shape.end())); auto* data = input_tensor->mutable_data(); for (int j = 0; j < input_size; j++) { data[j] = 0.f; } predictor->Run(); } std::vector> out_rets; out_rets.resize(FLAGS_iteration); double cost_time = 0; for (size_t i = 0; i < raw_data.size(); ++i) { auto input_tensor = predictor->GetInput(0); input_tensor->Resize( std::vector(input_shape.begin(), input_shape.end())); auto* data = input_tensor->mutable_data(); memcpy(data, raw_data[i].data(), sizeof(float) * input_size); double start = GetCurrentUS(); predictor->Run(); cost_time += GetCurrentUS() - start; auto output_tensor = predictor->GetOutput(0); auto output_shape = output_tensor->shape(); auto output_data = output_tensor->data(); ASSERT_EQ(output_shape.size(), 2UL); ASSERT_EQ(output_shape[0], 1); ASSERT_EQ(output_shape[1], 1000); int output_size = output_shape[0] * output_shape[1]; out_rets[i].resize(output_size); memcpy(&(out_rets[i].at(0)), output_data, sizeof(float) * output_size); } LOG(INFO) << "================== Speed Report ==================="; LOG(INFO) << "Model: " << FLAGS_model_dir << ", threads num " << FLAGS_threads << ", warmup: " << FLAGS_warmup << ", batch: " << FLAGS_batch << ", iteration: " << FLAGS_iteration << ", spend " << cost_time / FLAGS_iteration / 1000.0 << " ms in average."; std::string labels_dir = FLAGS_data_dir + std::string("/labels.txt"); float out_accuracy = CalOutAccuracy(out_rets, labels_dir); ASSERT_GE(out_accuracy, 0.57f); } } // namespace lite } // namespace paddle