/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ==============================================================================*/ #include #include "common/log.h" #include "framework/framework.pb.h" #include "framework/lod_tensor.h" #include "framework/program_desc.h" #include "framework/scope.h" #include "framework/tensor.h" #include "io.h" namespace paddle_mobile { void ReadBinaryFile(const std::string &filename, std::string *contents) { std::ifstream fin(filename, std::ios::in | std::ios::binary); fin.seekg(0, std::ios::end); contents->clear(); contents->resize(fin.tellg()); fin.seekg(0, std::ios::beg); fin.read(&(contents->at(0)), contents->size()); fin.close(); } template void Loader::LoadVar(framework::LoDTensor *tensor, const std::string &file_path) { // LOG(kLOG_DEBUG) << " to load " << file_path; // Log(kLOG_DEBUG) << "123"; std::ifstream is(file_path); std::streampos pos = is.tellg(); // save current position is.seekg(0, std::ios::end); // LOG(kLOG_DEBUG) << " file length = " << is.tellg(); is.seekg(pos); // restore saved position // 1. version uint32_t version; is.read(reinterpret_cast(&version), sizeof(version)); // LOG(kLOG_INFO) << " version: " << version; // 2 Lod information uint64_t lod_level; is.read(reinterpret_cast(&lod_level), sizeof(lod_level)); // LOG(kLOG_DEBUG) << " load level: " << lod_level; // LOG(kLOG_DEBUG) << " lod info: "; auto &lod = *tensor->mutable_lod(); lod.resize(lod_level); for (uint64_t i = 0; i < lod_level; ++i) { uint64_t size; is.read(reinterpret_cast(&size), sizeof(size)); std::vector tmp(size / sizeof(size_t)); is.read(reinterpret_cast(tmp.data()), static_cast(size)); for (int j = 0; j < tmp.size(); ++j) { LOG(kLOG_DEBUG1) << " lod - " << tmp[j]; } lod[i] = tmp; } // 3. tensor version uint32_t tensor_version; is.read(reinterpret_cast(&tensor_version), sizeof(tensor_version)); // std::cout << " tensor_version: " << tensor_version << std::endl; // 4. tensor desc int32_t size; is.read(reinterpret_cast(&size), sizeof(size)); // std::cout << " tensor desc size: " << size << std::endl; std::unique_ptr buf(new char[size]); is.read(reinterpret_cast(buf.get()), size); framework::proto::VarType::TensorDesc desc; desc.ParseFromArray(buf.get(), size); // std::cout << " desc dims size " << desc.dims().size() << // std::endl; int memory_size = 1; for (int l = 0; l < desc.dims().size(); ++l) { // std::cout << " dim " << l << " value: " << desc.dims()[l] // << // std::endl; memory_size *= desc.dims()[l]; } std::vector dims; dims.reserve(static_cast(desc.dims().size())); std::copy(desc.dims().begin(), desc.dims().end(), std::back_inserter(dims)); tensor->Resize(framework::make_ddim(dims)); void *memory; int type_size = 0; // std::cout << " desc pre type: "; switch (desc.data_type()) { case framework::proto::VarType::FP16: // std::cout << "FP16" << std::endl; type_size = 2; break; case framework::proto::VarType::FP32: type_size = 4; memory = tensor->mutable_data(); // std::cout << "FP32" << std::endl; break; case framework::proto::VarType::FP64: type_size = 8; // std::cout << "FP64" << std::endl; break; case framework::proto::VarType::INT32: type_size = 4; // std::cout << "INT32" << std::endl; break; case framework::proto::VarType::INT64: type_size = 8; // std::cout << "INT64" << std::endl; break; case framework::proto::VarType::BOOL: type_size = 1; // std::cout << "BOOL" << std::endl; break; default: break; // std::cout << " not support" << std::endl; } // std::cout << " malloc size: " << memory_size * type_size << // std::endl; is.read(static_cast(memory), memory_size * type_size); // std::cout << " memory: " << memory << std::endl; is.close(); }; template const framework::Program Loader::Load(const std::string &dirname) { std::string model_filename = dirname + "/__model__"; std::string program_desc_str; ReadBinaryFile(model_filename, &program_desc_str); framework::proto::ProgramDesc program_desc_proto; program_desc_proto.ParseFromString(program_desc_str); std::shared_ptr originProgramDesc = std::make_shared(program_desc_proto); framework::Program program; program.originProgram = originProgramDesc; std::shared_ptr scope = std::make_shared(); program.scope = scope; auto block = originProgramDesc->Block(0); for (auto block : originProgramDesc->Blocks()) { // std::cout << "for block" << std::endl; for (int i = 0; i < block->Vars().size(); ++i) { std::shared_ptr var_desc = block->Vars()[i]; auto var = scope->Var(var_desc->Name()); if (var_desc->GetType() == framework::proto::VarType::LOD_TENSOR) { if (var_desc->Persistable() && var_desc->GetType() != framework::proto::VarType::FEED_MINIBATCH && var_desc->GetType() != framework::proto::VarType::FETCH_LIST) { framework::LoDTensor *tensor = var->GetMutable(); // to load LoadVar(tensor, dirname + "/" + var_desc->Name()); } } else { // std::cout << "非 lod" << std::endl; } } } #ifdef PADDLE_MOBILE_DEBUG for (int i = 0; i < program_desc_proto.blocks().size(); ++i) { framework::proto::BlockDesc block = program_desc_proto.blocks()[i]; LOG(kLOG_DEBUG) << "block: " << block.idx(); for (int j = 0; j < block.ops().size(); ++j) { if (j == 2) { break; } framework::proto::OpDesc op = block.ops()[j]; LOG(kLOG_DEBUG1) << "op: " << op.type(); for (int m = 0; m < op.inputs_size(); ++m) { const framework::proto::OpDesc::Var &var = op.inputs(m); LOG(kLOG_DEBUG2) << "input parameter: " << var.parameter(); for (int n = 0; n < var.arguments().size(); ++n) { LOG(kLOG_DEBUG3) << "argument - " << var.arguments()[n]; } } for (int y = 0; y < op.outputs_size(); ++y) { const framework::proto::OpDesc::Var &var = op.outputs(y); LOG(kLOG_DEBUG2) << "out parameter: " << var.parameter(); for (int z = 0; z < var.arguments().size(); ++z) { LOG(kLOG_DEBUG3) << "argument - " << var.arguments()[z]; } } for (int x = 0; x < op.attrs().size(); ++x) { const framework::proto::OpDesc_Attr attr = op.attrs()[x]; LOG(kLOG_DEBUG2) << "attr name: " << attr.name(); switch (attr.type()) { case framework::proto::AttrType::BOOLEAN: LOG(kLOG_DEBUG3) << "boolen: " << attr.b(); break; case framework::proto::AttrType::INT: LOG(kLOG_DEBUG3) << "int: " << attr.i(); break; case framework::proto::AttrType::FLOAT: LOG(kLOG_DEBUG3) << "float: " << attr.f(); case framework::proto::AttrType::STRING: LOG(kLOG_DEBUG3) << "string: " << attr.s(); case framework::proto::AttrType::BOOLEANS: for (int y = 0; y < attr.bools_size(); ++y) { LOG(kLOG_DEBUG3) << "bools: " << attr.bools(y); } case framework::proto::AttrType::LONG: LOG(kLOG_DEBUG3) << "long: " << attr.l(); case framework::proto::AttrType::FLOATS: for (int y = 0; y < attr.floats_size(); ++y) { LOG(kLOG_DEBUG3) << "floats: " << attr.floats(y); } case framework::proto::AttrType::INTS: for (int y = 0; y < attr.ints_size(); ++y) { LOG(kLOG_DEBUG3) << "ints: " << attr.ints(y); } case framework::proto::AttrType::STRINGS: for (int y = 0; y < attr.strings_size(); ++y) { LOG(kLOG_DEBUG3) << "strings: " << attr.strings(y); } } } } for (int k = 0; k < block.vars().size(); ++k) { framework::proto::VarDesc var = block.vars()[k]; if (var.type().type() == framework::proto::VarType::LOD_TENSOR) { LOG(kLOG_DEBUG1) << "var name: " << var.name(); const framework::proto::VarType::TensorDesc &tensor_desc = var.type().lod_tensor().tensor(); LOG(kLOG_DEBUG2) << "in var tensor desc dims size: " << tensor_desc.dims().size(); int memory_size = 1; for (int l = 0; l < tensor_desc.dims().size(); ++l) { LOG(kLOG_DEBUG3) << "var tensor desc dim " << l << " value: " << tensor_desc.dims()[l]; } } if (var.persistable() && var.type().type() != framework::proto::VarType::FEED_MINIBATCH && var.type().type() != framework::proto::VarType::FETCH_LIST) { // std::cout << " to load " << var.name() << // std::endl; std::string file_path = dirname + "/" + var.name(); std::ifstream is(file_path); std::streampos pos = is.tellg(); // save current position is.seekg(0, std::ios::end); // std::cout << " file length = " << is.tellg() << // std::endl; is.seekg(pos); // restore saved position // 1. version uint32_t version; is.read(reinterpret_cast(&version), sizeof(version)); // std::cout << " version: " << version << // std::endl; // 2 Lod information uint64_t lod_level; is.read(reinterpret_cast(&lod_level), sizeof(lod_level)); // std::cout << " load level: " << lod_level << // std::endl; // std::cout << " lod info: " << std::endl; for (uint64_t i = 0; i < lod_level; ++i) { uint64_t size; is.read(reinterpret_cast(&size), sizeof(size)); std::vector tmp(size / sizeof(size_t)); is.read(reinterpret_cast(tmp.data()), static_cast(size)); for (int j = 0; j < tmp.size(); ++j) { // std::cout << " lod - " << tmp[j] << // std::endl; } } uint32_t tensor_version; is.read(reinterpret_cast(&version), sizeof(version)); // std::cout << " tensor_version: " << // tensor_version << // std::endl; int32_t size; is.read(reinterpret_cast(&size), sizeof(size)); // std::cout << " tensor desc size: " << size << // std::endl; std::unique_ptr buf(new char[size]); is.read(reinterpret_cast(buf.get()), size); framework::proto::VarType::TensorDesc desc; desc.ParseFromArray(buf.get(), size); // std::cout << " desc dims size " << // desc.dims().size() << // std::endl; int memory_size = 1; for (int l = 0; l < desc.dims().size(); ++l) { // std::cout << " dim " << l << " value: " // << // desc.dims()[l] // << std::endl; memory_size *= desc.dims()[l]; } int type_size = 0; // std::cout << " desc pre type: "; switch (desc.data_type()) { case framework::proto::VarType::FP16: // std::cout << "FP16" << std::endl; type_size = 2; break; case framework::proto::VarType::FP32: type_size = 4; // std::cout << "FP32" << std::endl; break; case framework::proto::VarType::FP64: type_size = 8; // std::cout << "FP64" << std::endl; break; case framework::proto::VarType::INT32: type_size = 4; // std::cout << "INT32" << std::endl; break; case framework::proto::VarType::INT64: type_size = 8; // std::cout << "INT64" << std::endl; break; case framework::proto::VarType::BOOL: type_size = 1; // std::cout << "BOOL" << std::endl; break; default: break; // std::cout << " not support" << // std::endl; } // std::cout << " malloc size: " << memory_size * // type_size // << std::endl; void *memory = malloc(memory_size * type_size); is.read(static_cast(memory), memory_size * type_size); // std::cout << " memory: " << memory << // std::endl; is.close(); } else { // std::cout << " *not load " // << " var : " << var.name() << std::endl; } } } #endif return program; } template class Loader; } // namespace paddle_mobile