// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/arm/prior_box_compute.h" #include #include #include "lite/backends/arm/math/funcs.h" namespace paddle { namespace lite { namespace kernels { namespace arm { inline void ExpandAspectRatios(const std::vector& input_aspect_ratior, bool flip, std::vector* output_aspect_ratior) { constexpr float epsilon = 1e-6; output_aspect_ratior->clear(); output_aspect_ratior->push_back(1.0f); for (size_t i = 0; i < input_aspect_ratior.size(); ++i) { float ar = input_aspect_ratior[i]; bool already_exist = false; for (size_t j = 0; j < output_aspect_ratior->size(); ++j) { if (fabs(ar - output_aspect_ratior->at(j)) < epsilon) { already_exist = true; break; } } if (!already_exist) { output_aspect_ratior->push_back(ar); if (flip) { output_aspect_ratior->push_back(1.0f / ar); } } } } void PriorBoxCompute::PrepareForRun() { auto& param = Param(); bool is_flip = param.flip; bool is_clip = param.clip; std::vector min_size = param.min_sizes; std::vector max_size = param.max_sizes; std::vector aspect_ratio = param.aspect_ratios; std::vector variance = param.variances_; int img_w = param.img_w; int img_h = param.img_h; float step_w = param.step_w; float step_h = param.step_h; float offset = param.offset; std::vector aspect_ratios_vec; ExpandAspectRatios(aspect_ratio, is_flip, &aspect_ratios_vec); size_t prior_num = aspect_ratios_vec.size() * min_size.size(); prior_num += max_size.size(); std::vector order = param.order; bool min_max_aspect_ratios_order = param.min_max_aspect_ratios_order; lite::arm::math::prior_box(param.input, param.image, &out_boxes, &variances, min_size, max_size, aspect_ratios_vec, variance, img_w, img_h, step_w, step_h, offset, prior_num, is_flip, is_clip, order, min_max_aspect_ratios_order); this->_flag_init = true; } void PriorBoxCompute::Run() { if (!this->_flag_init) { LOG(FATAL) << "ERROR: init priorbox first\n"; } auto& param = Param(); param.boxes->Resize(out_boxes.dims()); param.variances->Resize(out_boxes.dims()); memcpy(param.boxes->mutable_data(), out_boxes.data(), param.boxes->numel()); memcpy(param.variances->mutable_data(), variances.data(), param.variances->numel()); } } // namespace arm } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(prior_box, kARM, kFloat, kNCHW, paddle::lite::kernels::arm::PriorBoxCompute, def) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM))}) .BindInput("Image", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("Boxes", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("Variances", {LiteType::GetTensorTy(TARGET(kARM))}) .Finalize();