// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "lite/api/paddle_place.h" #include "lite/core/kernel.h" #include "lite/core/op_registry.h" #include "lite/core/target_wrapper.h" #include "lite/core/type_system.h" #include "lite/kernels/opencl/image_helper.h" #include "lite/operators/op_params.h" #include "lite/utils/cp_logging.h" namespace paddle { namespace lite { namespace kernels { namespace opencl { class LayoutComputeBufferChwToImage2DHwc : public KernelLite { public: using param_t = operators::LayoutParam; void PrepareForRun() override { auto& context = ctx_->As(); context.cl_context()->AddKernel( kernel_func_name_, "buffer/layout_kernel.cl", build_options_); } void Run() override { auto& param = Param(); auto* x_data = param.x->data(); auto x_dims = param.x->dims(); auto image_shape = InitImageDimInfoWith(x_dims); auto* y_data = param.y->mutable_data( image_shape["width"], image_shape["height"]); auto y_dims = param.y->dims(); // out info std::vector new_dims = {1, 1, 1, 1}; for (int tidx = 0; tidx < x_dims.size(); ++tidx) { new_dims[4 - x_dims.size() + tidx] = x_dims[tidx]; } const int out_C = new_dims[1]; const int out_H = new_dims[2]; const int out_W = new_dims[3]; const int Stride2 = out_C * out_H * out_W; const int Stride1 = out_H * out_W; const int Stride0 = out_W; VLOG(4) << "x_dims[" << x_dims.size() << "D]:" << x_dims[0] << " " << x_dims[1] << " " << x_dims[2] << " " << x_dims[3]; VLOG(4) << "y_dims[" << y_dims.size() << "D]:" << y_dims[0] << " " << y_dims[1] << " " << y_dims[2] << " " << y_dims[3]; VLOG(4) << "new_dims[" << new_dims.size() << "D]:" << new_dims[0] << " " << new_dims[1] << " " << new_dims[2] << " " << new_dims[3]; VLOG(4) << "out_C:" << out_C; VLOG(4) << "out_H:" << out_H; VLOG(4) << "out_W:" << out_W; VLOG(4) << "Stride2:" << Stride2; VLOG(4) << "Stride1:" << Stride1; VLOG(4) << "Stride0:" << Stride0; auto& context = ctx_->As(); CHECK(context.cl_context() != nullptr); STL::stringstream kernel_key; kernel_key << kernel_func_name_ << build_options_; auto kernel = context.cl_context()->GetKernel(kernel_key.str()); int arg_idx = 0; cl_int status = kernel.setArg(arg_idx, *x_data); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *y_data); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(out_H)); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(out_W)); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(out_C)); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(Stride0)); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(Stride1)); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(Stride2)); CL_CHECK_FATAL(status); VLOG(4) << "gws:[3D]" << ((new_dims[1] + 3) / 4) << " " << new_dims[3] << " " << (new_dims[0] * new_dims[2]); auto global_work_size = cl::NDRange{static_cast((new_dims[1] + 3) / 4), static_cast(new_dims[3]), static_cast(new_dims[0] * new_dims[2])}; status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel( kernel, cl::NullRange, global_work_size, cl::NullRange, nullptr, event_.get()); CL_CHECK_FATAL(status); // TODO(ysh329): io_copy(device->host) jammed if emplace to `cl_wait_list` // context.cl_wait_list()->emplace(y_data, event_); context.cl_context()->GetCommandQueue().finish(); } std::string doc() const override { return "Trans Layout from cl::Buffer(NCHW) to cl::Image2D(RGBA)"; } private: std::string kernel_func_name_{"buffer_to_image2d"}; std::string build_options_{"-DCL_DTYPE=float"}; std::shared_ptr event_{new cl::Event}; }; class LayoutComputeImage2DHwcToBufferChw : public KernelLite { public: using param_t = operators::LayoutParam; void PrepareForRun() override { auto& context = ctx_->As(); context.cl_context()->AddKernel( kernel_func_name_, "buffer/layout_kernel.cl", build_options_); } void Run() override { auto& param = Param(); auto* y_data = param.y->mutable_data(TARGET(kOpenCL)); auto y_dims = param.y->dims(); auto* x_data = param.x->data(); auto x_dims = param.x->dims(); std::vector new_dims = {1, 1, 1, 1}; for (int j = 0; j < x_dims.size(); ++j) { new_dims[4 - x_dims.size() + j] = x_dims[j]; } VLOG(4) << "x_dims[" << x_dims.size() << "D]:" << x_dims[0] << " " << x_dims[1] << " " << x_dims[2] << " " << x_dims[3]; VLOG(4) << "y_dims[" << y_dims.size() << "D]:" << y_dims[0] << " " << y_dims[1] << " " << y_dims[2] << " " << y_dims[3]; VLOG(4) << "new_dims[" << new_dims.size() << "D]:" << new_dims[0] << " " << new_dims[1] << " " << new_dims[2] << " " << new_dims[3]; size_t C = new_dims[1]; size_t in_height = new_dims[2]; size_t in_width = new_dims[3]; int size_ch = in_height * in_width; int size_block = size_ch * 4; int size_batch = size_ch * C; auto& context = ctx_->As(); CHECK(context.cl_context() != nullptr); STL::stringstream kernel_key; kernel_key << kernel_func_name_ << build_options_; auto kernel = context.cl_context()->GetKernel(kernel_key.str()); int arg_idx = 0; cl_int status = kernel.setArg(arg_idx, *x_data); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(in_width)); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(in_height)); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *y_data); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(size_ch)); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(size_ch)); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(size_batch)); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(C)); CL_CHECK_FATAL(status); VLOG(4) << "gws:[3D]" << ((new_dims[1] + 3) / 4) << " " << new_dims[3] << " " << (new_dims[0] * new_dims[2]); auto global_work_size = cl::NDRange{static_cast((new_dims[1] + 3) / 4), static_cast(new_dims[3]), static_cast(new_dims[0] * new_dims[2])}; status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel( kernel, cl::NullRange, global_work_size, cl::NullRange, nullptr, event_.get()); CL_CHECK_FATAL(status); // TODO(ysh329): io_copy(device->host) jammed if emplace to `cl_wait_list` // context.cl_wait_list()->emplace(y_data, event_); context.cl_context()->GetCommandQueue().finish(); } std::string doc() const override { return "Trans Layout from cl::Image2D(RGBA) to cl::Buffer(NCHW)"; } private: std::string kernel_func_name_{"image2d_to_buffer"}; std::string build_options_{"-DCL_DTYPE=float"}; std::shared_ptr event_{new cl::Event}; }; } // namespace opencl } // namespace kernels } // namespace lite } // namespace paddle // BufferChwToImage2DHwc // [chw] -> [hwc] REGISTER_LITE_KERNEL( layout, kOpenCL, kFloat, kNHWC, paddle::lite::kernels::opencl::LayoutComputeBufferChwToImage2DHwc, buffer_chw_to_image2d_hwc_opencl_fp32) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNCHW))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNHWC))}) .Finalize(); // [chw] -> [hwc] REGISTER_LITE_KERNEL( layout_once, kOpenCL, kFloat, kNHWC, paddle::lite::kernels::opencl::LayoutComputeBufferChwToImage2DHwc, buffer_chw_to_image2d_hwc_opencl_fp32) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNCHW))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNHWC))}) .Finalize(); // Image2DHwcBufferChw // [hwc] -> [chw] REGISTER_LITE_KERNEL( layout, kOpenCL, kFloat, kNCHW, paddle::lite::kernels::opencl::LayoutComputeImage2DHwcToBufferChw, image2d_hwc_to_buffer_chw_opencl_fp32) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNHWC))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNCHW))}) .Finalize(); // [hwc] -> [chw] REGISTER_LITE_KERNEL( layout_once, kOpenCL, kFloat, kNCHW, paddle::lite::kernels::opencl::LayoutComputeImage2DHwcToBufferChw, image2d_hwc_to_buffer_chw_opencl_fp32) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNHWC))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNCHW))}) .Finalize();