/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include "../test_helper.h" #include "../test_include.h" const int max_run_times = 10; int main(int argc, char **argv) { if (argc < 3) { std::cerr << "Usage: ./test_ocr [detect_model_dir|recog_model_dir] image_path" << std::endl; return 1; } std::string model_dir = argv[1]; std::string image_path = argv[2]; // init input, output params std::vector input_vec; std::vector input_shape; std::vector output_fetch_nodes; int PRINT_NODE_ELEM_NUM = 10; bool is_det_model = model_dir.find("detect") != string::npos; if (is_det_model) { input_shape.emplace_back(1); input_shape.emplace_back(3); input_shape.emplace_back(512); input_shape.emplace_back(512); output_fetch_nodes.emplace_back("sigmoid_0.tmp_0"); output_fetch_nodes.emplace_back("tmp_5"); } else { input_shape.emplace_back(1); input_shape.emplace_back(3); input_shape.emplace_back(48); input_shape.emplace_back(512); output_fetch_nodes.emplace_back("top_k_1.tmp_0"); output_fetch_nodes.emplace_back("cast_330.tmp_0"); } std::shared_ptr outputs[output_fetch_nodes.size()]; // init paddle instance paddle_mobile::PaddleMobile paddle_mobile; paddle_mobile.SetThreadNum(1); std::cout << "start load " << std::endl; auto load_success = paddle_mobile.Load(std::string(model_dir) + "/model", std::string(model_dir) + "/params", true, false, 1, true); std::cout << "load_success:" << load_success << std::endl; // input image raw tensor, generated by // [scripts](tools/python/imagetools/img2nchw.py) std::cout << "image_path: " << image_path << std::endl; std::cout << "input_shape: " << input_shape[0] << ", " << input_shape[1] << ", " << input_shape[2] << ", " << input_shape[3] << std::endl; GetInput(image_path, &input_vec, input_shape); // model predict auto pred_start_time = paddle_mobile::time(); for (int run_idx = 0; run_idx < max_run_times; ++run_idx) { paddle_mobile.Predict(input_vec, input_shape); for (int out_idx = 0; out_idx < output_fetch_nodes.size(); ++out_idx) { auto fetch_name = output_fetch_nodes[out_idx]; outputs[out_idx] = paddle_mobile.Fetch(fetch_name); } } auto pred_end_time = paddle_mobile::time(); // inference time double pred_time = paddle_mobile::time_diff(pred_start_time, pred_end_time) / max_run_times; std::cout << "predict time(ms): " << pred_time << std::endl; // output result for (int out_idx = 0; out_idx < output_fetch_nodes.size(); ++out_idx) { std::string node_id = output_fetch_nodes[out_idx]; auto node_lod_tensor = outputs[out_idx]; int node_elem_num = node_lod_tensor->numel(); float *node_ptr = node_lod_tensor->data(); std::cout << "==== output_fetch_nodes[" << out_idx << "] =====" << std::endl; std::cout << "node_id: " << node_id << std::endl; std::cout << "node_elem_num: " << node_elem_num << std::endl; std::cout << "PRINT_NODE_ELEM_NUM: " << PRINT_NODE_ELEM_NUM << std::endl; PRINT_NODE_ELEM_NUM = (node_elem_num > PRINT_NODE_ELEM_NUM) ? PRINT_NODE_ELEM_NUM : 0; for (int eidx = 0; eidx < PRINT_NODE_ELEM_NUM; ++eidx) { std::cout << node_id << "[" << eidx << "]: " << node_ptr[eidx] << std::endl; } std::cout << std::endl; } return 0; }