// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/arm/conv_compute.h" #include "lite/core/op_registry.h" #include "lite/core/type_system.h" namespace paddle { namespace lite { namespace kernels { namespace arm { void ConvCompute::PrepareForRun() { auto& param = this->Param(); auto x_dims = param.x->dims(); auto w_dims = param.filter->dims(); auto o_dims = param.output->dims(); auto& ctx = this->ctx_->template As(); int win = x_dims[3]; // nchw int hin = x_dims[2]; int ic = x_dims[1]; int bs = x_dims[0]; int ow = o_dims[3]; int oh = o_dims[2]; int oc = o_dims[1]; int kh = w_dims[2]; // oihw int kw = w_dims[3]; int pad = param.paddings[0]; int stride = param.strides[0]; const auto* i_data = param.x->data(); const auto* w_data = param.filter->data(); const auto* b_data = param.bias ? param.bias->data() : nullptr; auto* o_data = param.output->mutable_data(); bool kps_equal = (param.paddings[0] == param.paddings[1]) && (param.strides[0] == param.strides[1]) && (kw == kh); bool no_dilation = (param.dilations[0] == 1) && (param.dilations[1] == 1); bool flag_dw_3x3 = (kw == 3 && (pad == 0 || pad == 1) && (stride == 1 || stride == 2)); bool flag_dw_5x5 = (kw == 5 && stride == 1) || (kw == 5 && stride == 2 && pad == 2); bool flag_dw = flag_dw_3x3 || flag_dw_5x5; // select conv impl if (param.groups == ic && ic == oc && kps_equal && no_dilation && flag_dw) { // dw conv impl impl_ = new lite::arm::math::DepthwiseConv; VLOG(3) << "invoking dw conv"; } else if (param.groups == 1 && kw == 3 && stride == 1 && kps_equal && no_dilation) { if (ic >= 32 && oc >= 32 && oh > 16 && ow > 16) { // winograd conv impl impl_ = new lite::arm::math::WinogradConv; VLOG(3) << "invoking winograd conv"; } else { // direct conv impl impl_ = new lite::arm::math::DirectConv; VLOG(3) << "invoking direct conv"; } } else if (param.groups == 1 && kw == 3 && stride == 2 && kps_equal && no_dilation) { // direct conv impl impl_ = new lite::arm::math::DirectConv; VLOG(3) << "invoking direct conv"; } else { impl_ = new lite::arm::math::GemmLikeConv; VLOG(3) << "invoking gemm like conv"; } CHECK(this->impl_->create(param, &ctx)); } void ConvCompute::Run() { auto& param = this->Param(); CHECK(impl_); impl_->run(param); // if (this->act_ != nullptr) { // this->act_->run(outputs, outputs, param.activation_param); // } } template void ConvComputeInt8::PrepareForRun() { auto& param = this->Param(); auto x_dims = param.x->dims(); auto w_dims = param.filter->dims(); auto o_dims = param.output->dims(); auto& ctx = this->ctx_->template As(); int win = x_dims[3]; // nchw int hin = x_dims[2]; int ic = x_dims[1]; int bs = x_dims[0]; int ow = o_dims[3]; int oh = o_dims[2]; int oc = o_dims[1]; int kh = w_dims[2]; // oihw int kw = w_dims[3]; int ph = param.paddings[1]; int pw = param.paddings[0]; int sh = param.strides[1]; int sw = param.strides[0]; bool with_bias = param.bias; bool kps_equal = (pw == ph) && (sh == sw) && (kw == kh); bool no_dilation = (param.dilations[0] == 1) && (param.dilations[1] == 1); bool flag_dw_3x3 = (kw == 3) && (ph == 1) && (sw == 1 || sw == 2); bool flag_dw_5x5 = (kw == 5 && sw == 1 && ph == 2); bool flag_dw = flag_dw_3x3 || flag_dw_5x5; if (param.groups == ic && ic == oc && kps_equal && no_dilation && flag_dw) { impl_ = new lite::arm::math::DepthwiseConvInt8; VLOG(3) << "Run DepthwiseConv Int8"; } else if (param.groups == 1 && kw == 3 && (sw == 1 || sw == 2) && kps_equal && no_dilation) { VLOG(3) << "Run DirectConv Int8"; impl_ = new lite::arm::math::DirectConvInt8; } else { VLOG(3) << "Run GemmLikeConvInt8"; impl_ = new lite::arm::math::GemmLikeConvInt8; } // Convert fp32 bias to int32 bias. if (with_bias) { Tensor temp_tensor; temp_tensor.CopyDataFrom(*param.bias); lite::arm::math::trans_fp32_bias_to_int32_basic( &temp_tensor, param.bias, param.input_scale, param.weight_scale); } // param.bias->data(); CHECK(this->impl_->create(param, &ctx)); } template void ConvComputeInt8::Run() { auto& param = this->Param(); CHECK(impl_); impl_->run(param); } template class ConvComputeInt8; template class ConvComputeInt8; template class ConvComputeInt8; } // namespace arm } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL( conv2d, kARM, kFloat, kNCHW, paddle::lite::kernels::arm::ConvCompute, def) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM))}) .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))}) .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kARM))}) .Finalize(); REGISTER_LITE_KERNEL(depthwise_conv2d, kARM, kFloat, kNCHW, paddle::lite::kernels::arm::ConvCompute, def) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM))}) .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))}) .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kARM))}) .Finalize(); REGISTER_LITE_KERNEL( conv2d, kARM, kInt8, kNCHW, paddle::lite::kernels::arm::ConvComputeInt8, int8_out) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))}) .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt32))}) .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))}) .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))}) .Finalize(); REGISTER_LITE_KERNEL( conv2d, kARM, kInt8, kNCHW, paddle::lite::kernels::arm::ConvComputeInt8, fp32_out) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))}) .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt32))}) .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))}) .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kFloat))}) .Finalize(); REGISTER_LITE_KERNEL( depthwise_conv2d, kARM, kInt8, kNCHW, paddle::lite::kernels::arm::ConvComputeInt8, int8_out) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))}) .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt32))}) .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))}) .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))}) .Finalize(); REGISTER_LITE_KERNEL( depthwise_conv2d, kARM, kInt8, kNCHW, paddle::lite::kernels::arm::ConvComputeInt8, fp32_out) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))}) .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt32))}) .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))}) .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kFloat))}) .Finalize();