/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #ifdef POOL_OP #ifdef _OPENMP #include #endif #include "framework/tensor.h" #include "pool_3x3.h" #if __ARM_NEON #include #endif // __ARM_NEON #include namespace paddle_mobile { namespace operators { namespace math { using framework::Tensor; using std::max; using std::min; using std::vector; void Pool3x3Avgs1p1(const Tensor *input, Tensor *output) { #if __ARM_NEON const int batch_size = input->dims()[0]; const int h_in = input->dims()[2]; const int w_in = input->dims()[3]; const int output_channels = output->dims()[1]; const int h_out = output->dims()[2]; const int w_out = output->dims()[3]; const int outputdata_channel_stride = h_out * w_out; const int inputdata_channel_stride = h_in * w_in; const int input_batch_stride = output_channels * inputdata_channel_stride; const int output_batch_stride = output_channels * outputdata_channel_stride; float *out_data = output->data(); const float *input_data = input->data(); const float coef = 1.0 / 9.0; for (int k = 0; k < batch_size; ++k) { #pragma omp parallel for for (int c = 0; c < output_channels; ++c) { const float *input_seg = input_data + c * inputdata_channel_stride; float *output_seg = out_data + c * outputdata_channel_stride; // four corner point output_seg[0] = (input_seg[0] + input_seg[1] + input_seg[w_in] + input_seg[w_in + 1]) * coef; output_seg[w_out - 1] = (input_seg[w_in - 2] + input_seg[w_in - 1] + input_seg[w_in * 2 - 2] + input_seg[2 * w_in - 1]) * coef; output_seg[(h_out - 1) * w_out] = (input_seg[(h_in - 2) * w_in] + input_seg[(h_in - 2) * w_in + 1] + input_seg[(h_in - 1) * w_in] + input_seg[(h_in - 1) * w_in + 1]) * coef; output_seg[h_out * w_out - 1] = (input_seg[h_in * w_in - 1] + input_seg[h_in * w_in - 2] + input_seg[(h_in - 1) * w_in - 1] + input_seg[(h_in - 1) * w_in - 2]) * coef; // left side & right side for (int i = 1; i < h_in - 1; ++i) { output_seg[i * w_out] = (input_seg[i * w_in - w_in] + input_seg[i * w_in - w_in + 1] + input_seg[i * w_in] + input_seg[i * w_in + 1] + input_seg[i * w_in + w_in] + input_seg[i * w_in + w_in + 1]) * coef; output_seg[i * w_out + w_out - 1] = (input_seg[i * w_in - w_in + w_in - 2] + input_seg[i * w_in - w_in + 1 + w_in - 2] + input_seg[i * w_in + w_in - 2] + input_seg[i * w_in + 1 + w_in - 2] + input_seg[i * w_in + w_in + w_in - 2] + input_seg[i * w_in + w_in + 1 + w_in - 2]) * coef; } // top 1 row & bottom 1 row const float *input_tmp = input_seg; float32x4_t in0, in1, in2, in3, in4, in5, in6, in7, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, sum, out0; float32x4_t v_coef = vdupq_n_f32(coef); in0 = vld1q_f32(input_tmp); in2 = vld1q_f32(input_tmp + w_in); const float *input_tmp_end = input_tmp + (h_in - 2) * w_in; in4 = vld1q_f32(input_tmp_end); in6 = vld1q_f32(input_tmp_end + w_in); int c_mid = w_out - 2; auto output_ptr = output_seg + 1; for (; c_mid > 3; c_mid -= 4) { in1 = vld1q_f32(input_tmp + 4); in3 = vld1q_f32(input_tmp + w_in + 4); tmp0 = vextq_f32(in0, in1, 1); tmp1 = vextq_f32(in0, in1, 2); tmp2 = vextq_f32(in2, in3, 1); tmp3 = vextq_f32(in2, in3, 2); sum = vaddq_f32(in0, tmp0); sum = vaddq_f32(sum, tmp1); sum = vaddq_f32(sum, in2); sum = vaddq_f32(sum, tmp2); sum = vaddq_f32(sum, tmp3); vst1q_f32(output_ptr, vmulq_f32(sum, v_coef)); in5 = vld1q_f32(input_tmp_end + 4); in7 = vld1q_f32(input_tmp_end + w_in + 4); tmp0 = vextq_f32(in4, in5, 1); tmp1 = vextq_f32(in4, in5, 2); tmp2 = vextq_f32(in6, in7, 1); tmp3 = vextq_f32(in6, in7, 2); sum = vaddq_f32(in0, tmp0); sum = vaddq_f32(sum, tmp1); sum = vaddq_f32(sum, in2); sum = vaddq_f32(sum, tmp2); sum = vaddq_f32(sum, tmp3); vst1q_f32(output_ptr + (h_out - 1) * w_out, vmulq_f32(sum, v_coef)); // can optimize to each 8 stride. input_tmp += 4; input_tmp_end += 4; output_ptr += 4; in0 = in1; in2 = in3; in4 = in5; in6 = in7; } // top right remain float32x4_t pad0 = vdupq_n_f32(input_seg[w_in - 1]); float32x4_t pad1 = vdupq_n_f32(input_seg[2 * w_in - 1]); tmp0 = vextq_f32(in0, pad0, 1); tmp1 = vextq_f32(in0, pad0, 2); tmp2 = vextq_f32(in2, pad1, 2); tmp3 = vextq_f32(in2, pad1, 2); sum = vaddq_f32(in0, tmp0); sum = vaddq_f32(sum, tmp1); sum = vaddq_f32(sum, in2); sum = vaddq_f32(sum, tmp2); sum = vaddq_f32(sum, tmp3); out0 = vmulq_f32(sum, v_coef); for (int i = 0; i < c_mid; ++i) { if (i == 0) { vst1q_lane_f32(output_ptr + i, out0, 0); } if (i == 1) { vst1q_lane_f32(output_ptr + i, out0, 1); } if (i == 2) { vst1q_lane_f32(output_ptr + i, out0, 2); } } // bottom_right remain float32x4_t pad2 = vdupq_n_f32(input_seg[(h_in - 1) * w_in - 1]); float32x4_t pad3 = vdupq_n_f32(input_seg[h_in * w_in - 1]); tmp0 = vextq_f32(in4, pad2, 1); tmp1 = vextq_f32(in4, pad2, 2); tmp2 = vextq_f32(in6, pad3, 2); tmp3 = vextq_f32(in6, pad3, 2); sum = vaddq_f32(in4, tmp0); sum = vaddq_f32(sum, tmp1); sum = vaddq_f32(sum, in6); sum = vaddq_f32(sum, tmp2); sum = vaddq_f32(sum, tmp3); out0 = vmulq_f32(sum, v_coef); for (int i = 0; i < c_mid; ++i) { if (i == 0) { vst1q_lane_f32(output_ptr + (h_out - 1) * w_out + i, out0, 0); } if (i == 1) { vst1q_lane_f32(output_ptr + (h_out - 1) * w_out + i, out0, 1); } if (i == 2) { vst1q_lane_f32(output_ptr + (h_out - 1) * w_out + i, out0, 2); } } // mid for (int j = 0; j < h_out - 2; ++j) { output_ptr = output_seg + w_out * (j + 1) + 1; input_tmp = input_seg + j * w_in; in0 = vld1q_f32(input_tmp); in2 = vld1q_f32(input_tmp + w_in); in4 = vld1q_f32(input_tmp + 2 * w_in); c_mid = w_out - 2; for (; c_mid > 3; c_mid -= 4) { in1 = vld1q_f32(input_tmp + 4); in3 = vld1q_f32(input_tmp + w_in + 4); in5 = vld1q_f32(input_tmp + 2 * w_in + 4); tmp0 = vextq_f32(in0, in1, 1); tmp1 = vextq_f32(in0, in1, 2); tmp2 = vextq_f32(in2, in3, 1); tmp3 = vextq_f32(in2, in3, 2); tmp4 = vextq_f32(in4, in5, 1); tmp5 = vextq_f32(in4, in5, 2); sum = vaddq_f32(in0, tmp0); sum = vaddq_f32(sum, tmp1); sum = vaddq_f32(sum, in2); sum = vaddq_f32(sum, tmp2); sum = vaddq_f32(sum, tmp3); sum = vaddq_f32(sum, in4); sum = vaddq_f32(sum, tmp4); sum = vaddq_f32(sum, tmp5); out0 = vmulq_f32(sum, v_coef); vst1q_f32(output_ptr, out0); output_ptr += 4; input_tmp += 4; in0 = in1; in2 = in3; in4 = in5; } // mid remain float32x4_t pad0 = vdupq_n_f32(input_seg[(j + 1) * w_in - 1]); float32x4_t pad1 = vdupq_n_f32(input_seg[(j + 2) * w_in - 1]); float32x4_t pad2 = vdupq_n_f32(input_seg[(j + 2) * w_in - 1]); tmp0 = vextq_f32(in0, pad0, 1); tmp1 = vextq_f32(in0, pad0, 2); tmp2 = vextq_f32(in2, pad1, 1); tmp3 = vextq_f32(in2, pad1, 2); tmp4 = vextq_f32(in4, pad2, 1); tmp5 = vextq_f32(in4, pad2, 2); sum = vaddq_f32(in0, tmp0); sum = vaddq_f32(sum, tmp1); sum = vaddq_f32(sum, in2); sum = vaddq_f32(sum, tmp2); sum = vaddq_f32(sum, tmp3); sum = vaddq_f32(sum, in4); sum = vaddq_f32(sum, tmp4); sum = vaddq_f32(sum, tmp5); out0 = vmulq_f32(sum, v_coef); for (int i = 0; i < c_mid; ++i) { if (i == 0) { vst1q_lane_f32(output_ptr + i, out0, 0); } if (i == 1) { vst1q_lane_f32(output_ptr + i, out0, 1); } if (i == 2) { vst1q_lane_f32(output_ptr + i, out0, 2); } } } // input_data += inputdata_channel_stride; // out_data += outputdata_channel_stride; } input_data += input_batch_stride; out_data += output_batch_stride; } #endif } void Pool3x3Maxs1p1(const Tensor *input, Tensor *output) { #if __ARM_NEON const int batch_size = input->dims()[0]; const int h_in = input->dims()[2]; const int w_in = input->dims()[3]; const int output_channels = output->dims()[1]; const int h_out = output->dims()[2]; const int w_out = output->dims()[3]; const int outputdata_channel_stride = h_out * w_out; const int inputdata_channel_stride = h_in * w_in; const int input_batch_stride = output_channels * inputdata_channel_stride; const int output_batch_stride = output_channels * outputdata_channel_stride; float *out_data = output->data(); const float *input_data = input->data(); for (int k = 0; k < batch_size; ++k) { #pragma omp parallel for for (int c = 0; c < output_channels; ++c) { const float *input_seg = input_data + c * inputdata_channel_stride; float *output_seg = out_data + c * outputdata_channel_stride; // four corner point output_seg[0] = std::max(std::max(input_seg[0], input_seg[1]), std::max(input_seg[w_in], input_seg[w_in + 1])); output_seg[w_out - 1] = std::max(std::max(input_seg[w_in - 2], input_seg[w_in - 1]), std::max(input_seg[w_in * 2 - 2], input_seg[2 * w_in - 1])); output_seg[(h_out - 1) * w_out] = std::max(std::max(input_seg[(h_in - 2) * w_in], input_seg[(h_in - 2) * w_in + 1]), std::max(input_seg[(h_in - 1) * w_in], input_seg[(h_in - 1) * w_in + 1])); output_seg[h_out * w_out - 1] = std::max( std::max(input_seg[(h_in - 1) * w_in - 1], input_seg[(h_in - 1) * w_in - 2]), std::max(input_seg[h_in * w_in - 1], input_seg[h_in * w_in - 2])); // left side & right side for (int i = 1; i < h_in - 1; ++i) { float max1 = std::max(input_seg[i * w_in - w_in], input_seg[i * w_in - w_in + 1]); float max2 = std::max(input_seg[i * w_in], input_seg[i * w_in + 1]); float max3 = std::max(input_seg[i * w_in + w_in], input_seg[i * w_in + w_in + 1]); output_seg[i * w_out] = std::max(std::max(max1, max2), max3); max1 = std::max(input_seg[i * w_in - w_in + w_in - 2], input_seg[i * w_in - w_in + 1 + w_in - 2]); max2 = std::max(input_seg[i * w_in + w_in - 2], input_seg[i * w_in + 1 + w_in - 2]); max3 = std::max(input_seg[i * w_in + w_in + w_in - 2], input_seg[i * w_in + w_in + 1 + w_in - 2]); output_seg[i * w_out + w_out - 1] = std::max(std::max(max1, max2), max3); } // top 1 row & bottom 1 row const float *input_tmp = input_seg; float32x4_t in0, in1, in2, in3, in4, in5, in6, in7, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, max; in0 = vld1q_f32(input_tmp); in2 = vld1q_f32(input_tmp + w_in); const float *input_tmp_end = input_tmp + (h_in - 2) * w_in; in4 = vld1q_f32(input_tmp_end); in6 = vld1q_f32(input_tmp_end + w_in); int c_mid = w_out - 2; auto output_ptr = output_seg + 1; for (; c_mid > 3; c_mid -= 4) { in1 = vld1q_f32(input_tmp + 4); in3 = vld1q_f32(input_tmp + w_in + 4); tmp0 = vextq_f32(in0, in1, 1); tmp1 = vextq_f32(in0, in1, 2); tmp2 = vextq_f32(in2, in3, 1); tmp3 = vextq_f32(in2, in3, 2); max = vmaxq_f32(in0, tmp0); max = vmaxq_f32(max, tmp1); max = vmaxq_f32(max, in2); max = vmaxq_f32(max, tmp2); max = vmaxq_f32(max, tmp3); vst1q_f32(output_ptr, max); in5 = vld1q_f32(input_tmp_end + 4); in7 = vld1q_f32(input_tmp_end + w_in + 4); tmp0 = vextq_f32(in4, in5, 1); tmp1 = vextq_f32(in4, in5, 2); tmp2 = vextq_f32(in6, in7, 1); tmp3 = vextq_f32(in6, in7, 2); max = vmaxq_f32(in4, tmp0); max = vmaxq_f32(max, tmp1); max = vmaxq_f32(max, in6); max = vmaxq_f32(max, tmp2); max = vmaxq_f32(max, tmp3); vst1q_f32(output_ptr + (h_out - 1) * w_out, max); input_tmp += 4; input_tmp_end += 4; output_ptr += 4; in0 = in1; in2 = in3; in4 = in5; in6 = in7; } // top right remain float32x4_t pad0 = vdupq_n_f32(input_seg[w_in - 1]); float32x4_t pad1 = vdupq_n_f32(input_seg[2 * w_in - 1]); tmp0 = vextq_f32(in0, pad0, 1); tmp1 = vextq_f32(in0, pad0, 2); tmp2 = vextq_f32(in2, pad1, 1); tmp3 = vextq_f32(in2, pad1, 2); max = vmaxq_f32(in0, tmp0); max = vmaxq_f32(max, tmp1); max = vmaxq_f32(max, in2); max = vmaxq_f32(max, tmp2); max = vmaxq_f32(max, tmp3); for (int i = 0; i < c_mid; ++i) { if (i == 0) { vst1q_lane_f32(output_ptr + i, max, 0); } if (i == 1) { vst1q_lane_f32(output_ptr + i, max, 1); } if (i == 2) { vst1q_lane_f32(output_ptr + i, max, 2); } } // bottom_right remain float32x4_t pad2 = vdupq_n_f32(input_seg[(h_in - 1) * w_in - 1]); float32x4_t pad3 = vdupq_n_f32(input_seg[h_in * w_in - 1]); tmp0 = vextq_f32(in4, pad2, 1); tmp1 = vextq_f32(in4, pad2, 2); tmp2 = vextq_f32(in6, pad3, 1); tmp3 = vextq_f32(in6, pad3, 2); max = vmaxq_f32(in4, tmp0); max = vmaxq_f32(max, tmp1); max = vmaxq_f32(max, in6); max = vmaxq_f32(max, tmp2); max = vmaxq_f32(max, tmp3); for (int i = 0; i < c_mid; ++i) { if (i == 0) { vst1q_lane_f32(output_ptr + (h_out - 1) * w_out + i, max, 0); } if (i == 1) { vst1q_lane_f32(output_ptr + (h_out - 1) * w_out + i, max, 1); } if (i == 2) { vst1q_lane_f32(output_ptr + (h_out - 1) * w_out + i, max, 2); } } // mid for (int j = 0; j < h_out - 2; ++j) { output_ptr = output_seg + (j + 1) * w_out + 1; input_tmp = input_seg + j * w_in; in0 = vld1q_f32(input_tmp); in2 = vld1q_f32(input_tmp + w_in); in4 = vld1q_f32(input_tmp + 2 * w_in); c_mid = w_out - 2; for (; c_mid > 3; c_mid -= 4) { in1 = vld1q_f32(input_tmp + 4); in3 = vld1q_f32(input_tmp + w_in + 4); in5 = vld1q_f32(input_tmp + 2 * w_in + 4); tmp0 = vextq_f32(in0, in1, 1); tmp1 = vextq_f32(in0, in1, 2); tmp2 = vextq_f32(in2, in3, 1); tmp3 = vextq_f32(in2, in3, 2); tmp4 = vextq_f32(in4, in5, 1); tmp5 = vextq_f32(in4, in5, 2); max = vmaxq_f32(in0, tmp0); max = vmaxq_f32(max, tmp1); max = vmaxq_f32(max, in2); max = vmaxq_f32(max, tmp2); max = vmaxq_f32(max, tmp3); max = vmaxq_f32(max, in4); max = vmaxq_f32(max, tmp4); max = vmaxq_f32(max, tmp5); vst1q_f32(output_ptr, max); output_ptr += 4; input_tmp += 4; in0 = in1; in2 = in3; in4 = in5; } // mid remain float32x4_t pad0 = vdupq_n_f32(input_seg[(j + 1) * w_in - 1]); float32x4_t pad1 = vdupq_n_f32(input_seg[(j + 2) * w_in - 1]); float32x4_t pad2 = vdupq_n_f32(input_seg[(j + 3) * w_in - 1]); tmp0 = vextq_f32(in0, pad0, 1); tmp1 = vextq_f32(in0, pad0, 2); tmp2 = vextq_f32(in2, pad1, 1); tmp3 = vextq_f32(in2, pad1, 2); tmp4 = vextq_f32(in4, pad2, 1); tmp5 = vextq_f32(in4, pad2, 2); max = vmaxq_f32(in0, tmp0); max = vmaxq_f32(max, tmp1); max = vmaxq_f32(max, in2); max = vmaxq_f32(max, tmp2); max = vmaxq_f32(max, tmp3); max = vmaxq_f32(max, in4); max = vmaxq_f32(max, tmp4); max = vmaxq_f32(max, tmp5); for (int i = 0; i < c_mid; ++i) { if (i == 0) { vst1q_lane_f32(output_ptr + i, max, 0); } if (i == 1) { vst1q_lane_f32(output_ptr + i, max, 1); } if (i == 2) { vst1q_lane_f32(output_ptr + i, max, 2); } } } // input_data += inputdata_channel_stride; // out_data += outputdata_channel_stride; } input_data += input_batch_stride; out_data += output_batch_stride; } #endif } void Pool3x3Max(vector strides, vector paddings, const Tensor *input, Tensor *output) { #if __ARM_NEON const int batch_size = input->dims()[0]; const int input_height = input->dims()[2]; const int input_width = input->dims()[3]; const int output_channels = output->dims()[1]; const int output_height = output->dims()[2]; const int output_width = output->dims()[3]; // const int _kernel_size = 3; const int stride = strides[0]; // const int stride_width = strides[1]; const int padding = paddings[0]; // const int padding_width = paddings[1]; const float negative_max = -INT_MAX; const int input_channel_stride = input_height * input_width; const int output_channel_stride = output_height * output_width; const float *input_data = input->data(); float *output_data = output->mutable_data(); const int input_batch_stride = output_channels * input_channel_stride; const int output_batch_stride = output_channels * output_channel_stride; const float *pos1, *output_ptr; int hstart, wstart, hend, wend; for (int i = 0; i < batch_size; ++i) { #pragma omp parallel for for (int c = 0; c < output_channels; ++c) { const float *input_seg = input_data + c * input_channel_stride; float *output_seg = output_data + c * output_channel_stride; for (int ph = 0; ph < output_height; ph++) { for (int pw = 0; pw < output_width; pw++) { int hstart = ph * stride - padding; int wstart = pw * stride - padding; int hend = min(hstart + 3, input_height + padding); int wend = min(wstart + 3, input_width + padding); hstart = max(hstart, 0); wstart = max(wstart, 0); hend = min(hend, input_height); wend = min(wend, input_width); const float *pos1 = input_seg + hstart * input_width + wstart; const float *pos2 = input_seg + (hstart + 1) * input_width + wstart; const float *pos3 = input_seg + (hstart + 2) * input_width + wstart; output_ptr = output_seg + ph * output_width + pw; if (hend - hstart != 3 || wend - wstart != 3) { float max_value = -INT_MAX; for (int h = hstart; h < hend; h++) { for (int w = wstart; w < wend; w++) { float value = input_seg[h * input_width + w]; if (value > max_value) { max_value = value; } } } output_seg[ph * output_width + pw] = max_value; } else { #if defined(ARMV7) asm volatile( "vld1.32 {q1}, [%[pos1]] \n\t" "vld1.32 {q2}, [%[pos2]] \n\t" "vld1.32 {q3}, [%[pos3]] \n\t" "vmax.f32 q1, q1, q2 \n\t" "vmax.f32 q2, q1, q3 \n\t" "vmov.f32 d5[1], %[negative_max] \n\t" "vpmax.f32 d6, d4, d5 \n\t" "vpmax.f32 d7, d6, d6 \n\t" "vst1.32 {d7[0]},[%[output_ptr]] \n\t" : : [input_seg] "r"(input_seg), [pos1] "r"(pos1), [pos2] "r"(pos2), [pos3] "r"(pos3), [output_ptr] "r"(output_ptr), [negative_max] "r"(negative_max) : "memory", "q1", "q2", "q3", "q4"); #else const float32x4_t data1 = vld1q_f32(pos1); const float32x4_t data2 = vld1q_f32(pos1 + input_width); const float32x4_t data3 = vld1q_f32(pos1 + 2 * input_width); const float32x4_t max_data = vmaxq_f32(vmaxq_f32(data1, data2), data3); float32x2_t res = vpmax_f32(vget_high_f32(vsetq_lane_f32(-INT_MAX, max_data, 3)), vget_low_f32(max_data)); res = vpmax_f32(res, res); output_seg[ph * output_width + pw] = vget_lane_f32(res, 0); #endif } } } } input_data += input_batch_stride; output_data += output_batch_stride; } #endif } void Pool3x3Avg(vector strides, vector paddings, const Tensor *input, Tensor *output) { #if __ARM_NEON const int batch_size = input->dims()[0]; const int input_height = input->dims()[2]; const int input_width = input->dims()[3]; const int output_channels = output->dims()[1]; const int output_height = output->dims()[2]; const int output_width = output->dims()[3]; const int stride = strides[0]; const int padding = paddings[0]; const int input_channel_stride = input_height * input_width; const int output_channel_stride = output_height * output_width; const float *input_data = input->data(); float *output_data = output->mutable_data(); const float zero = 0; const float nine = 1.0 / 9.0; const float nine_ptr[] = {nine, nine}; const int input_batch_stride = output_channels * input_channel_stride; const int output_batch_stride = output_channels * output_channel_stride; for (int i = 0; i < batch_size; ++i) { #pragma omp parallel for for (int c = 0; c < output_channels; ++c) { const float *input_seg = input_data + c * input_channel_stride; float *output_seg = output_data + c * output_channel_stride; for (int ph = 0; ph < output_height; ph++) { for (int pw = 0; pw < output_width; pw++) { int hstart = ph * stride - padding; int wstart = pw * stride - padding; int hend = min(hstart + 3, input_height + padding); int wend = min(wstart + 3, input_width + padding); hstart = max(hstart, 0); wstart = max(wstart, 0); hend = min(hend, input_height); wend = min(wend, input_width); const float *pos1 = input_seg + hstart * input_width + wstart; const float *pos2 = input_seg + (hstart + 1) * input_width + wstart; const float *pos3 = input_seg + (hstart + 2) * input_width + wstart; float *output_ptr = output_seg + ph * output_width + pw; if (hend - hstart != 3 || wend - wstart != 3) { float sum = 0; for (int h = hstart; h < hend; h++) { for (int w = wstart; w < wend; w++) { sum += input_seg[h * input_width + w]; } } output_seg[ph * output_width + pw] = sum / 9.0; } else { #if defined(ARMV7) asm volatile( "vld1.32 {q1}, [%[pos1]] \n\t" "vld1.32 {q2}, [%[pos2]] \n\t" "vld1.32 {q3}, [%[pos3]] \n\t" "vadd.f32 q1, q1, q2 \n\t" "vadd.f32 q2, q1, q3 \n\t" "vmov.f32 d5[1], %[zero] \n\t" "vpadd.f32 d6, d4, d5 \n\t" "vpadd.f32 d6, d6, d6 \n\t" "vld1.f32 d7, [%[nine_ptr]]! \n\t" "vmul.f32 d6,d7 \n\t" "vst1.32 {d6[0]},[%[output_ptr]] \n\t" : : [input_seg] "r"(input_seg), [pos1] "r"(pos1), [pos2] "r"(pos2), [pos3] "r"(pos3), [output_ptr] "r"(output_ptr), [zero] "r"(zero), [nine_ptr] "r"(nine_ptr) : "memory", "r6", "q1", "q2", "q3", "q4"); #else const float32x4_t data1 = vld1q_f32(pos1); const float32x4_t data2 = vld1q_f32(pos2); const float32x4_t data3 = vld1q_f32(pos3); const float32x4_t sum_data = vaddq_f32(vaddq_f32(data1, data3), data2); float32x2_t res = vpadd_f32(vget_high_f32(vsetq_lane_f32(0, sum_data, 3)), vget_low_f32(sum_data)); res = vpadd_f32(res, res); output_seg[ph * output_width + pw] = vget_lane_f32(res, 0) / 9.0; #endif } } } } input_data += input_batch_stride; output_data += output_batch_stride; } #endif } } // namespace math } // namespace operators } // namespace paddle_mobile #endif