// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/x86/sequence_pool_compute.h" #include #include #include #include #include "lite/core/op_registry.h" namespace paddle { namespace lite { namespace kernels { namespace x86 { TEST(sequence_pool_x86, retrive_op) { auto sequence_pool = KernelRegistry::Global().Create( "sequence_pool"); ASSERT_FALSE(sequence_pool.empty()); ASSERT_TRUE(sequence_pool.front()); } TEST(sequence_pool_x86, init) { SequencePoolCompute sequence_pool; ASSERT_EQ(sequence_pool.precision(), PRECISION(kFloat)); ASSERT_EQ(sequence_pool.target(), TARGET(kX86)); } TEST(sequence_pool_x86, run_test) { lite::Tensor x, out; lite::LoD lod; lod.push_back(std::vector{0, 10}); x.set_lod(lod); const size_t second_dim = 8u; std::vector input_shape{static_cast(lod[0].back()), static_cast(second_dim)}; lite::DDim in_dims(input_shape); x.Resize(in_dims); const size_t out_first_dim = lod[0].size() - 1; std::vector output_shape{static_cast(out_first_dim), static_cast(second_dim)}; lite::DDim out_dims(output_shape); out.Resize(out_dims); auto x_data = x.mutable_data(); auto out_data = out.mutable_data(); for (int64_t i = 0; i < x.dims().production(); i++) { x_data[i] = 1.1f * i; } SequencePoolCompute sequence_pool; operators::SequencePoolParam param; param.X = &x; param.Out = &out; std::unique_ptr ctx(new KernelContext); ctx->As(); sequence_pool.SetContext(std::move(ctx)); sequence_pool.SetParam(param); sequence_pool.Run(); std::vector ref_results = { 39.6, 40.7, 41.8, 42.9, 44, 45.1, 46.2, 47.3}; for (int i = 0; i < out.dims().production(); i++) { EXPECT_NEAR(out_data[i], ref_results[i], 1e-3); } } } // namespace x86 } // namespace kernels } // namespace lite } // namespace paddle USE_LITE_KERNEL(sequence_pool, kX86, kFloat, kNCHW, def);