// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.ddNod // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/mlu/layout_compute.h" namespace paddle { namespace lite { namespace kernels { namespace mlu {} // namespace mlu } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL( layout, kMLU, kFloat, kNHWC, paddle::lite::kernels::mlu::LayoutNhwcToNchwCompute, def_layout_nhwc2nchw_fp32) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kFloat), DATALAYOUT(kNHWC))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kFloat), DATALAYOUT(kNCHW))}) .Finalize(); REGISTER_LITE_KERNEL( layout, kMLU, kFP16, kNHWC, paddle::lite::kernels::mlu::LayoutNhwcToNchwCompute, def_layout_nhwc2nchw_fp16) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kFP16), DATALAYOUT(kNCHW))}) .Finalize(); REGISTER_LITE_KERNEL( layout, kMLU, kFloat, kNHWC, paddle::lite::kernels::mlu::LayoutNchwToNhwcCompute, def_layout_nchw2nhwc_fp32) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kFloat), DATALAYOUT(kNCHW))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kFloat), DATALAYOUT(kNHWC))}) .Finalize(); REGISTER_LITE_KERNEL( layout, kMLU, kFP16, kNHWC, paddle::lite::kernels::mlu::LayoutNchwToNhwcCompute, def_layout_nchw2nhwc_fp16) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kFP16), DATALAYOUT(kNCHW))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .Finalize(); REGISTER_LITE_KERNEL( layout, kMLU, kInt8, kNHWC, paddle::lite::kernels::mlu::LayoutNchwToNhwcCompute, def_layout_nchw2nhwc_fp32_int8) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kInt8), DATALAYOUT(kNCHW))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kInt8), DATALAYOUT(kNHWC))}) .Finalize();