// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "lite/api/paddle_use_kernels.h" #include "lite/api/paddle_use_ops.h" #include "lite/core/arena/framework.h" #include "lite/tests/utils/fill_data.h" namespace paddle { namespace lite { class MulComputeTester : public arena::TestCase { protected: // common attributes for this op. std::string type_ = "mul"; std::string x_ = "x"; std::string y_ = "y"; std::string out_ = "out"; DDim x_dims_{{1, 2}}; DDim y_dims_{{2, 1}}; int x_num_col_dims_{1}; int y_num_col_dims_{1}; public: MulComputeTester(const Place& place, const std::string& alias, DDim x_dims, DDim y_dims, int x_num_col_dims, int y_num_col_dims) : TestCase(place, alias), x_dims_(x_dims), y_dims_(y_dims), x_num_col_dims_(x_num_col_dims), y_num_col_dims_(y_num_col_dims) {} void RunBaseline(Scope* scope) override { auto* x = scope->FindTensor(x_); auto* y = scope->FindTensor(y_); auto x_mat_dims = x_dims_.Flatten2D(x_num_col_dims_); auto y_mat_dims = y_dims_.Flatten2D(y_num_col_dims_); CHECK_EQ(x_mat_dims[1], y_mat_dims[0]); auto* out = scope->NewTensor(out_); CHECK(out); std::vector out_shape; for (int i = 0; i < x_num_col_dims_; i++) { out_shape.push_back(x_dims_[i]); } for (int i = y_num_col_dims_; i < y_dims_.size(); i++) { out_shape.push_back(y_dims_[i]); } out->Resize(DDim(out_shape)); auto x_data = x->data(); auto y_data = y->data(); auto* out_data = out->mutable_data(); const int M = x_mat_dims[0]; const int K = x_mat_dims[1]; const int N = y_mat_dims[1]; for (int m = 0; m < M; ++m) { for (int n = 0; n < N; ++n) { out_data[m * N + n] = 0; for (int k = 0; k < K; ++k) { out_data[m * N + n] += x_data[m * K + k] * y_data[k * N + n]; } } } } void PrepareOpDesc(cpp::OpDesc* op_desc) { op_desc->SetType(type_); op_desc->SetInput("X", {x_}); op_desc->SetInput("Y", {y_}); op_desc->SetOutput("Out", {out_}); op_desc->SetAttr("x_num_col_dims", x_num_col_dims_); op_desc->SetAttr("y_num_col_dims", y_num_col_dims_); } void PrepareData() override { std::vector x(x_dims_.production()); fill_data_rand(x.data(), -1.f, 1.f, x_dims_.production()); SetCommonTensor(x_, x_dims_, x.data()); std::vector y(y_dims_.production()); fill_data_rand(y.data(), -1.f, 1.f, y_dims_.production()); SetCommonTensor(y_, y_dims_, y.data()); } }; void TestMul(const std::vector& x_dims, const std::vector& y_dims, int x_num_col_dims, int y_num_col_dims, const Place& place, float abs_error) { std::unique_ptr tester(new MulComputeTester(place, "def", DDim(x_dims), DDim(y_dims), x_num_col_dims, y_num_col_dims)); arena::Arena arena(std::move(tester), place, abs_error); arena.TestPrecision(); } TEST(Mul, precision) { LOG(INFO) << "test mul op"; float abs_error = 2e-5; Place place; #if defined(LITE_WITH_XPU) place = TARGET(kXPU); #else return; #endif TestMul({4, 5}, {5, 4}, 1, 1, place, abs_error); TestMul({4, 5}, {5, 4, 3, 2}, 1, 1, place, abs_error); TestMul({4, 20}, {5, 4, 3, 2}, 1, 2, place, abs_error); TestMul({4, 60}, {5, 4, 3, 2}, 1, 3, place, abs_error); TestMul({2, 3, 4, 5}, {60, 4}, 1, 1, place, abs_error); TestMul({2, 3, 4, 5}, {20, 4}, 2, 1, place, abs_error); TestMul({2, 3, 4, 5}, {5, 4}, 3, 1, place, abs_error); TestMul({2, 3, 4, 5}, {60, 3, 4, 5}, 1, 1, place, abs_error); TestMul({2, 3, 4, 5}, {4, 5, 6, 2}, 2, 2, place, abs_error); TestMul({2, 3, 4, 5}, {5, 1, 4, 2}, 3, 2, place, abs_error); } } // namespace lite } // namespace paddle