/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #ifdef CONV_OP #pragma once #include #include "operators/math/conv_func.h" #include "operators/math/depthwise_conv3x3.h" #include "operators/math/depthwise_conv5x5.h" #include "operators/math/im2col.h" #include "operators/math/math_function.h" #include "operators/math/pad.h" #include "operators/math/vol2col.h" #include "operators/math/winograd/winograd_transform.h" #include "operators/op_param.h" namespace paddle_mobile { namespace operators { template inline void GemmConv(const ConvParam ¶m) { const Tensor *input = param.Input(); Tensor filter = *param.Filter(); Tensor *output = param.Output(); output->mutable_data(); int groups = param.Groups(); const std::vector strides = param.Strides(); const std::vector paddings = param.Paddings(); const std::vector dilations = param.Dilations(); std::vector filter_shape_vec(framework::vectorize(filter.dims())); std::vector output_shape_vec(framework::vectorize(output->dims())); size_t data_dim = filter_shape_vec.size() - 2; std::vector col_shape_vec(1 + 2 * data_dim); col_shape_vec[0] = input->dims()[1] / groups; for (size_t j = 0; j < data_dim; ++j) { col_shape_vec[j + 1] = filter_shape_vec[j + 2]; col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2]; } framework::DDim col_shape(framework::make_ddim(col_shape_vec)); framework::DDim col_matrix_shape = framework::flatten_to_2d(col_shape, data_dim + 1); bool is_expand = math::IsExpand(filter_shape_vec, strides, paddings, dilations); Tensor col; Tensor col_matrix; if (is_expand) { col.mutable_data(col_shape); col_matrix.ShareDataWith(col); col_matrix.Resize(col_matrix_shape); } framework::DDim input_shape = framework::slice_ddim( input->dims(), 1, static_cast(input->dims().size())); framework::DDim filter_matrix_shape = {filter.dims()[0], filter.numel() / filter.dims()[0]}; filter.Resize(filter_matrix_shape); framework::DDim output_matrix_shape = { output->dims()[1], output->numel() / (output->dims()[0] * output->dims()[1])}; // convolution operator: im2col(or vol2col) + gemm int in_step = static_cast(input->dims()[1]) / groups; int out_step = static_cast(output->dims()[1]) / groups; math::Vol2ColFunctor vol2col; math::Im2ColFunctor im2col; const int batch_size = static_cast(input->dims()[0]); for (int i = 0; i < batch_size; i++) { Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape); Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape); for (int g = 0; g < groups; g++) { Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step); if (!is_expand) { // col_matrix.ShareDataWith(in_slice); col_matrix = in_slice; col_matrix.Resize(col_matrix_shape); } else if (data_dim == 2U) { // im2col im2col(in_slice, dilations, strides, std::vector{paddings[0], paddings[1], paddings[0], paddings[1]}, &col); } else if (data_dim == 3U) { // vol2col vol2col(in_slice, dilations, strides, paddings, &col); } // gemm Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step); Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step); math::MatMul(filter_slice, false, col_matrix, false, static_cast(1), &out_slice, static_cast(0), false, static_cast(nullptr)); } } } template inline void WinogradConv3x3(const ConvParam ¶m) { const Tensor *input = param.Input(); const Tensor *filter = param.transformed_filter_; Tensor *output = param.Output(); output->mutable_data(); int batch_size = input->dims()[0]; int groups = param.Groups(); const std::vector &paddings = param.Paddings(); auto winograd_pad = [&](int width, int pad) { int output_tile = tile - kernel + 1; // int tiles = (width + pad - kernel) / output_tile + 1; // return (tiles - 1) * output_tile + tile - width; int pad_width = (width + 2 * pad - kernel) / output_tile * output_tile; return pad_width + tile - width; }; math::PadFunctor pad; Tensor input_pad; framework::Tensor transformed_input; for (int i = 0; i < batch_size; ++i) { Tensor in_batch = input->Slice(i, i + 1); Tensor out_batch = output->Slice(i, i + 1); // int pad_bottom = winograd_pad(in_batch.dims()[2], paddings[0]); // int pad_right = winograd_pad(in_batch.dims()[3], paddings[1]); int pad_bottom = paddings[0]; int pad_right = paddings[1]; if (paddings[0] || paddings[1] || pad_bottom || pad_right) { framework::DDim pad_shape = in_batch.dims(); pad_shape[2] += paddings[0] + pad_bottom; pad_shape[3] += paddings[1] + pad_right; input_pad.mutable_data(pad_shape); pad(in_batch, paddings[0], pad_bottom, paddings[1], pad_right, &input_pad); } else { input_pad = in_batch; } // tile input and transform math::winograd_transform_input(input_pad, &transformed_input); // caculate output math::winograd_transform_output(transformed_input, *filter, output); } } #ifndef __aarch64__ template inline void DepthwiseConv3x3(const ConvParam ¶m) { const Tensor *input = param.Input(); const Tensor *filter = param.Filter(); const std::vector &paddings = param.Paddings(); const std::vector &strides = param.Strides(); const int batch_size = input->dims()[0]; Tensor *output = param.Output(); output->mutable_data(); for (int i = 0; i < batch_size; i++) { Tensor in_batch = input->Slice(i, i + 1); Tensor out_batch = output->Slice(i, i + 1); if (strides[0] == 1) { math::DepthwiseConv3x3S1(in_batch, *filter, paddings, &out_batch); } else if (strides[0] == 2) { math::DepthwiseConv3x3S2(in_batch, *filter, paddings, &out_batch); } else { GemmConv(param); } } } template inline void DepthwiseConv5x5(const ConvParam ¶m) { const Tensor *input = param.Input(); const Tensor *filter = param.Filter(); const std::vector &paddings = param.Paddings(); const std::vector &strides = param.Strides(); const int batch_size = input->dims()[0]; Tensor *output = param.Output(); output->mutable_data(); if (strides[0] == 1) { for (int i = 0; i < batch_size; i++) { Tensor in_batch = input->Slice(i, i + 1); Tensor out_batch = output->Slice(i, i + 1); math::DepthwiseConv5x5S1(in_batch, *filter, paddings, &out_batch); } } else { GemmConv(param); } } #endif // __aarch64__ template void ConvBNReluBasic(const ParamType ¶m) { const Tensor *input = param.Input(); Tensor filter = *param.Filter(); Tensor new_bias = *param.NewBias(); Tensor new_scale = *param.NewScale(); Tensor *output = param.Output(); output->mutable_data(); int groups = param.Groups(); std::vector strides = param.Strides(); std::vector paddings = param.Paddings(); std::vector dilations = param.Dilations(); const int batch_size = static_cast(input->dims()[0]); std::vector filter_shape_vec(framework::vectorize(filter.dims())); std::vector output_shape_vec(framework::vectorize(output->dims())); size_t data_dim = filter_shape_vec.size() - 2; std::vector col_shape_vec(1 + 2 * data_dim); col_shape_vec[0] = input->dims()[1] / groups; for (size_t j = 0; j < data_dim; ++j) { col_shape_vec[j + 1] = filter_shape_vec[j + 2]; col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2]; } framework::DDim col_shape(framework::make_ddim(col_shape_vec)); framework::DDim col_matrix_shape = framework::flatten_to_2d(col_shape, data_dim + 1); bool is_expand = math::IsExpand(filter_shape_vec, strides, paddings, dilations); Tensor col; Tensor col_matrix; if (is_expand) { col.mutable_data(col_shape); col_matrix.ShareDataWith(col); col_matrix.Resize(col_matrix_shape); } framework::DDim input_shape = framework::slice_ddim( input->dims(), 1, static_cast(input->dims().size())); framework::DDim filter_matrix_shape = {filter.dims()[0], filter.numel() / filter.dims()[0]}; filter.Resize(filter_matrix_shape); framework::DDim output_matrix_shape = { output->dims()[1], output->numel() / (output->dims()[0] * output->dims()[1])}; // convolution operator: im2col(or vol2col) + gemm int in_step = static_cast(input->dims()[1]) / groups; int out_step = static_cast(output->dims()[1]) / groups; math::Vol2ColFunctor vol2col; math::Im2ColFunctor im2col; for (int i = 0; i < batch_size; i++) { Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape); Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape); for (int g = 0; g < groups; g++) { Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step); if (!is_expand) { col_matrix = in_slice; col_matrix.Resize(col_matrix_shape); } else if (data_dim == 2U) { // im2col im2col(in_slice, dilations, strides, std::vector{paddings[0], paddings[1], paddings[0], paddings[1]}, &col); } else if (data_dim == 3U) { // vol2col vol2col(in_slice, dilations, strides, paddings, &col); } // gemm Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step); Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step); math::MatMulWithBn(filter_slice, false, col_matrix, false, static_cast(1), &out_slice, static_cast(0), true, &new_scale, &new_bias, g); } } } } // namespace operators } // namespace paddle_mobile #endif