// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/huawei_ascend_npu/bridges/graph.h" #include "lite/kernels/huawei_ascend_npu/bridges/utility.h" #include "lite/kernels/npu/bridges/registry.h" namespace paddle { namespace lite { namespace subgraph { namespace huawei_ascend_npu { int ScaleConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[HUAWEI_ASCEND_NPU] Converting " + op_type + "..."; // Get input, output and op attributes auto x_name = op_info->Input("X").front(); auto x = scope->FindMutableTensor(x_name); auto x_dims = x->dims(); auto out_name = op_info->Output("Out").front(); float scale = op_info->GetAttr("scale"); float bias = op_info->GetAttr("bias"); bool bias_after_scale = op_info->GetAttr("bias_after_scale"); if (!bias_after_scale) { bias *= scale; } // X node std::shared_ptr x_node = nullptr; if (graph->Has(x_name)) { x_node = graph->Get(x_name); } else { x_node = graph->Add(x_name, *x); } // const node auto input_scale_node = graph->Add(out_name + "/scale", scale, x_dims.Vectorize()); // scale node auto scale_node = graph->Add(out_name); auto scale_op = scale_node->data(); scale_op->set_input_x(*x_node->data()); scale_op->set_input_scale(*input_scale_node->data()); scale_op->set_attr_axis(0); scale_op->set_attr_num_axes(-1); scale_op->set_attr_scale_from_blob(true); INPUT_UPDATE(scale_op, x, x_node); INPUT_UPDATE(scale_op, scale, input_scale_node); OUTPUT_UPDATE(scale_op, y, scale_node); // Add bias node(fill with bias) if (fabs(bias) > 1e-6f) { auto bias_node = graph->Add(out_name + "/bias", bias, x_dims.Vectorize()); scale_op->set_input_bias(*bias_node->data()); INPUT_UPDATE(scale_op, bias, input_scale_node); } return REBUILD_WHEN_SHAPE_CHANGED; } } // namespace huawei_ascend_npu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE( scale, kHuaweiAscendNPU, paddle::lite::subgraph::huawei_ascend_npu::ScaleConverter);