// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "lite/kernels/bm/bridges/graph.h" #include "lite/kernels/bm/bridges/utility.h" #include "lite/kernels/npu/bridges/registry.h" namespace paddle { namespace lite { namespace subgraph { namespace bm { int PoolConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto scope = op->scope(); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto unique_op_name = lite::subgraph::bm::UniqueName(op_type); // input auto x_var_name = op_info->Input("X").front(); auto x = scope->FindVar(x_var_name)->GetMutable(); auto x_dims = x->dims(); const int64_t* x_shape_data = const_cast(&x_dims.data()[0]); std::vector i_x_shape_data(x_dims.size()); for (size_t i = 0; i < x_dims.size(); i++) { i_x_shape_data[i] = static_cast(x_shape_data[i]); } // output int32_t* shape[1]; int32_t dim[1]; const char* name[1]; auto output_var_name = op_info->Output("Out").front(); auto output = scope->FindVar(output_var_name)->GetMutable(); auto output_dims = output->dims(); const int64_t* output_shape_data = const_cast(&output_dims.data()[0]); std::vector i_output_shape_data(output_dims.size()); for (size_t i = 0; i < output_dims.size(); i++) { i_output_shape_data[i] = static_cast(output_shape_data[i]); } shape[0] = &i_output_shape_data[0]; name[0] = static_cast(output_var_name.c_str()); dim[0] = output_dims.size(); auto pooling_type = op_info->GetAttr("pooling_type"); CHECK(pooling_type == "max" || pooling_type == "avg"); auto ksize = op_info->GetAttr>("ksize"); auto paddings = op_info->GetAttr>("paddings"); auto strides = op_info->GetAttr>("strides"); auto global_pooling = op_info->GetAttr("global_pooling"); auto ceil_mode = op_info->GetAttr("ceil_mode"); bool average_exclusive = false; if (pooling_type == "avg") { average_exclusive = op_info->GetAttr("exclusive"); } add_pooling_layer( graph->GetCompilerHandle(), const_cast(&i_x_shape_data[0]), x_dims.size(), static_cast(x_var_name.c_str()), 1, shape, dim, name, ksize[0], ksize[1], paddings[0], paddings[0], paddings[1], paddings[1], strides[0], strides[1], (ksize[0] > 1 && ksize[1] > 1) && pooling_type == "max" ? 0 : 1, static_cast(average_exclusive), static_cast(global_pooling), static_cast(ceil_mode), static_cast(unique_op_name.c_str()), nullptr); graph->AddNode(output_var_name); return SUCCESS; } } // namespace bm } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(pool2d, kBM, paddle::lite::subgraph::bm::PoolConverter);