// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "lite/backends/opencl/cl_include.h" #include "lite/core/kernel.h" #include "lite/core/op_registry.h" #include "lite/kernels/opencl/image_helper.h" #include "lite/operators/op_params.h" #include "lite/utils/replace_stl/stream.h" #include "lite/utils/string.h" namespace paddle { namespace lite { namespace kernels { namespace opencl { class FcCompute : public KernelLite { public: using param_t = operators::FcParam; void PrepareForRun() override {} void ReInitWhenNeeded() override { fc_param_ = param_.get_mutable(); const auto x_dims = fc_param_->input->dims(); if ((!first_epoch_for_reinit_ && x_dims != last_x_dims_) || first_epoch_for_reinit_) { last_x_dims_ = x_dims; first_epoch_for_reinit_ = false; // compute m,n,k const auto w_dims = fc_param_->w->dims(); CHECK_GE(x_dims.size(), 2UL); CHECK_GE(w_dims.size(), 2UL); CHECK_EQ(fc_param_->output->dims().size(), 2UL); m_ = x_dims.Slice(0, fc_param_->in_num_col_dims).production(); k_ = x_dims.Slice(fc_param_->in_num_col_dims, x_dims.size()).production(); n_ = w_dims[1]; CHECK_EQ(k_, static_cast(w_dims[0])); #ifndef LITE_SHUTDOWN_LOG VLOG(4) << "x_dims:" << x_dims[0] << " " << x_dims[1] << " " << x_dims[2] << " " << x_dims[3]; VLOG(4) << "w_dims:" << w_dims[0] << " " << w_dims[1] << " " << w_dims[2] << " " << w_dims[3]; VLOG(4) << "m_: " << m_ << " n_: " << n_ << " k_: " << k_; #endif // choose kernel if (m_ == 1) { // gemv kernel_func_name_ = "fc_gemv_1x4"; } else { // gemm kernel_func_name_ = "fc_gemm_4x4"; } #ifndef LITE_SHUTDOWN_LOG VLOG(1) << "kernel_func_name_:" << kernel_func_name_; #endif if (fc_param_->activation_type == "relu") { build_options_ += "-DRELU"; } auto& context = ctx_->As(); kernel_ = context.cl_context()->CreateKernel(kernel_func_name_, "buffer/fc_kernel.cl", build_options_, time_stamp_); // compute global work size GetGlobalWorkSize(); } } void GetGlobalWorkSize() { if (m_ == 1) { // gemv global_work_size_ = cl::NDRange{static_cast((n_ + 3) / 4)}; } else { // gemm global_work_size_ = cl::NDRange{static_cast((m_ + 3) / 4), static_cast((n_ + 3) / 4)}; } } void Run() override { auto* x_buf = fc_param_->input->data(); auto* w_buf = fc_param_->w->data(); auto* bias_buf = fc_param_->bias->data(); auto* out_buf = fc_param_->output->mutable_data(TARGET(kOpenCL)); auto kernel = kernel_; cl_int status; status = kernel_->setArg(0, *x_buf); CL_CHECK_FATAL(status); status = kernel_->setArg(1, *w_buf); CL_CHECK_FATAL(status); status = kernel_->setArg(2, *bias_buf); CL_CHECK_FATAL(status); status = kernel_->setArg(3, *out_buf); CL_CHECK_FATAL(status); status = kernel_->setArg(4, static_cast(m_)); CL_CHECK_FATAL(status); status = kernel_->setArg(5, static_cast(n_)); CL_CHECK_FATAL(status); status = kernel_->setArg(6, static_cast(k_)); CL_CHECK_FATAL(status); auto& context = ctx_->As(); CHECK(context.cl_context() != nullptr); status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel( *(kernel.get()), cl::NullRange, global_work_size_, cl::NullRange, nullptr, event_.get()); CL_CHECK_FATAL(status); context.cl_wait_list()->emplace(out_buf, event_); } private: int m_, n_, k_; param_t* fc_param_{nullptr}; std::string kernel_func_name_{}; std::string build_options_{"-DCL_DTYPE_float "}; std::string time_stamp_{GetTimeStamp()}; bool first_epoch_for_reinit_{true}; DDim last_x_dims_; cl::NDRange global_work_size_; std::shared_ptr kernel_; std::shared_ptr event_{new cl::Event}; }; } // namespace opencl } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL( fc, kOpenCL, kFloat, kNCHW, paddle::lite::kernels::opencl::FcCompute, def) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kOpenCL))}) .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kOpenCL))}) .BindInput("W", {LiteType::GetTensorTy(TARGET(kOpenCL))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kOpenCL))}) .Finalize();