// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include "lite/api/paddle_api.h" #include "lite/api/test_helper.h" #include "lite/core/device_info.h" #include "lite/core/profile/timer.h" #include "lite/utils/cp_logging.h" #include "lite/utils/string.h" #ifdef LITE_WITH_PROFILE #include "lite/core/profile/basic_profiler.h" #endif // LITE_WITH_PROFILE using paddle::lite::profile::Timer; DEFINE_string(input_shape, "1,3,224,224", "input shapes, separated by colon and comma"); DEFINE_bool(use_optimize_nb, false, "optimized & naive buffer model for mobile devices"); DEFINE_string(arg_name, "", "the arg name"); DEFINE_string(threshold, "0.5", "threshold value default 0.5f"); DEFINE_string(in_txt, "", "input text"); DEFINE_string(out_txt, "", "output text"); DEFINE_int32(orih, 1920, "input image height"); DEFINE_int32(oriw, 1080, "input image width"); namespace paddle { namespace lite_api { struct Object { float x; float y; float width; float height; float class_id; float prob; }; void OutputOptModel(const std::string& load_model_dir, const std::string& save_optimized_model_dir, const std::vector>& input_shapes) { lite_api::CxxConfig config; config.set_model_dir(load_model_dir); config.set_valid_places({ Place{TARGET(kARM), PRECISION(kFloat)}, }); auto predictor = lite_api::CreatePaddlePredictor(config); // delete old optimized model int ret = system( paddle::lite::string_format("rm -rf %s", save_optimized_model_dir.c_str()) .c_str()); if (ret == 0) { LOG(INFO) << "delete old optimized model " << save_optimized_model_dir; } predictor->SaveOptimizedModel(save_optimized_model_dir, LiteModelType::kNaiveBuffer); LOG(INFO) << "Load model from " << load_model_dir; LOG(INFO) << "Save optimized model to " << save_optimized_model_dir; } void detect_choose(const float* dout, std::vector dims, const float thresh) { std::string name = FLAGS_out_txt + "_accu.txt"; FILE* fp = fopen(name.c_str(), "w"); for (int iw = 0; iw < dims[0]; iw++) { const float* values = dout + iw * dims[1]; if (values[1] > thresh) { // pro > 0.01 fprintf(fp, "%f \n", values[0]); fprintf(fp, "%f \n", values[1]); fprintf(fp, "%f \n", values[2]); fprintf(fp, "%f \n", values[3]); fprintf(fp, "%f \n", values[4]); fprintf(fp, "%f \n", values[5]); } } fclose(fp); } void detect_object(const float* dout, std::vector dims, const float thresh, int orih, int oriw) { std::vector objects; for (int iw = 0; iw < dims[0]; iw++) { Object object; const float* values = dout + iw * dims[1]; object.class_id = values[0]; object.prob = values[1]; object.x = values[2] * oriw; object.y = values[3] * orih; object.width = values[4] * oriw - object.x; object.height = values[5] * orih - object.y; objects.push_back(object); } std::string name = FLAGS_out_txt + "_accu.txt"; FILE* fp = fopen(name.c_str(), "w"); for (int i = 0; i < objects.size(); ++i) { Object object = objects.at(i); if (object.prob > thresh && object.x > 0 && object.y > 0 && object.width > 0 && object.height > 0) { if (object.x >= oriw || object.width >= oriw || object.y >= orih || object.height >= orih) continue; fprintf(fp, "%f \n", object.x); fprintf(fp, "%f \n", object.y); fprintf(fp, "%f \n", object.width); fprintf(fp, "%f \n", object.height); fprintf(fp, "%f \n", object.prob); fprintf(fp, "%f \n", object.class_id); LOG(INFO) << "object id: " << object.class_id << ", image size: " << oriw << ", " << orih << ", detect object: " << object.prob << ", location: x=" << object.x << ", y=" << object.y << ", width=" << object.width << ", height=" << object.height; } } fclose(fp); } #ifdef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK void Run(const std::vector>& input_shapes, const std::string& model_dir, const PowerMode power_mode, const int thread_num, const int repeat, const int warmup_times = 0) { lite_api::MobileConfig config; config.set_model_dir(model_dir); config.set_power_mode(power_mode); config.set_threads(thread_num); auto predictor = lite_api::CreatePaddlePredictor(config); bool flag_in = true; bool flag_out = true; if (FLAGS_in_txt == "") { flag_in = false; } if (FLAGS_out_txt == "") { flag_out = false; } printf("flag_in: %d, flag_out: %d \n", flag_in, flag_out); for (int j = 0; j < input_shapes.size(); ++j) { auto input_tensor = predictor->GetInput(j); input_tensor->Resize(input_shapes[j]); auto input_data = input_tensor->mutable_data(); int input_num = 1; for (int i = 0; i < input_shapes[j].size(); ++i) { input_num *= input_shapes[j][i]; } FILE* fp_r = nullptr; if (flag_in) { fp_r = fopen(FLAGS_in_txt.c_str(), "r"); } for (int i = 0; i < input_num; ++i) { if (flag_in) { fscanf(fp_r, "%f\n", &input_data[i]); } else { input_data[i] = 1.f; } } if (flag_in) { fclose(fp_r); } } for (int i = 0; i < warmup_times; ++i) { predictor->Run(); } Timer ti; for (int j = 0; j < repeat; ++j) { ti.Start(); predictor->Run(); float t = ti.Stop(); LOG(INFO) << "iter: " << j << ", time: " << t << " ms"; } LOG(INFO) << "================== Speed Report ==================="; LOG(INFO) << "Model: " << model_dir << ", power_mode: " << static_cast(power_mode) << ", threads num " << thread_num << ", warmup: " << warmup_times << ", repeats: " << repeat << ", avg time: " << ti.LapTimes().Avg() << " ms" << ", min time: " << ti.LapTimes().Min() << " ms" << ", max time: " << ti.LapTimes().Max() << " ms."; auto output = predictor->GetOutput(0); auto out = output->data(); auto output_shape = output->shape(); // detect detect_object( out, output_shape, atof(FLAGS_threshold.data()), FLAGS_orih, FLAGS_oriw); // detect_choose(out, output_shape, atof(FLAGS_threshold.data())); LOG(INFO) << "out " << out[0]; LOG(INFO) << "out " << out[1]; int output_num = 1; for (int i = 0; i < output_shape.size(); ++i) { output_num *= output_shape[i]; } LOG(INFO) << "output_num: " << output_num; FILE* fp = nullptr; if (flag_out) { fp = fopen(FLAGS_out_txt.c_str(), "w"); } double sum1 = 0.f; for (int i = 0; i < output_num; ++i) { if (flag_out) { fprintf(fp, "%f\n", out[i]); } sum1 += out[i]; } if (flag_out) { fclose(fp); } printf("out mean: %f \n", sum1 / output_num); FILE* fp_w = fopen("time.txt", "a+"); if (!fp_w) { printf("open file failed \n"); return; } fprintf(fp_w, "model: %s, threads: %d, avg: %f ms, min: %f ms, max: %f ms \n", model_dir.c_str(), thread_num, ti.LapTimes().Avg(), ti.LapTimes().Min(), ti.LapTimes().Max()); fclose(fp_w); // please turn off memory_optimize_pass to use this feature. if (FLAGS_arg_name != "") { auto arg_tensor = predictor->GetTensor(FLAGS_arg_name); auto arg_shape = arg_tensor->shape(); int arg_num = 1; std::ostringstream os; os << "{"; for (int i = 0; i < arg_shape.size(); ++i) { arg_num *= arg_shape[i]; os << arg_shape[i] << ","; } os << "}"; float sum = 0.; std::ofstream out(FLAGS_arg_name + ".txt"); for (size_t i = 0; i < arg_num; ++i) { sum += arg_tensor->data()[i]; out << paddle::lite::to_string(arg_tensor->data()[i]) << "\n"; } LOG(INFO) << FLAGS_arg_name << " shape is " << os.str() << ", mean value is " << sum * 1. / arg_num; } } #endif } // namespace lite_api } // namespace paddle int main(int argc, char** argv) { gflags::ParseCommandLineFlags(&argc, &argv, true); if (FLAGS_model_dir == "") { LOG(INFO) << "usage: " << "--model_dir /path/to/your/model"; exit(0); } std::string save_optimized_model_dir = ""; if (FLAGS_use_optimize_nb) { save_optimized_model_dir = FLAGS_model_dir; } else { save_optimized_model_dir = FLAGS_model_dir + "opt2"; } auto split_string = [](const std::string& str_in) -> std::vector { std::vector str_out; std::string tmp_str = str_in; while (!tmp_str.empty()) { size_t next_offset = tmp_str.find(":"); str_out.push_back(tmp_str.substr(0, next_offset)); if (next_offset == std::string::npos) { break; } else { tmp_str = tmp_str.substr(next_offset + 1); } } return str_out; }; auto get_shape = [](const std::string& str_shape) -> std::vector { std::vector shape; std::string tmp_str = str_shape; while (!tmp_str.empty()) { int dim = atoi(tmp_str.data()); shape.push_back(dim); size_t next_offset = tmp_str.find(","); if (next_offset == std::string::npos) { break; } else { tmp_str = tmp_str.substr(next_offset + 1); } } return shape; }; LOG(INFO) << "input shapes: " << FLAGS_input_shape; std::vector str_input_shapes = split_string(FLAGS_input_shape); std::vector> input_shapes; for (int i = 0; i < str_input_shapes.size(); ++i) { LOG(INFO) << "input shape: " << str_input_shapes[i]; input_shapes.push_back(get_shape(str_input_shapes[i])); } if (!FLAGS_use_optimize_nb) { // Output optimized model paddle::lite_api::OutputOptModel( FLAGS_model_dir, save_optimized_model_dir, input_shapes); } #ifdef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK // Run inference using optimized model paddle::lite_api::Run( input_shapes, save_optimized_model_dir, static_cast(FLAGS_power_mode), FLAGS_threads, FLAGS_repeats, FLAGS_warmup); #endif return 0; }