// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include "ge/ge_ir_build.h" #include "lite/backends/hw_ascend_npu/runtime.h" #include "lite/utils/cp_logging.h" namespace paddle { namespace lite { namespace hw_ascend_npu { class Device { public: static Device& Global() { static Device x; return x; } Device() : inited_(false) {} ~Device() { ReleaseDevice(); } bool is_device() const { return is_devcie_; } // Build the IR graph to om model, return a HWAscendNPURuntime instance to // load om model and run inference. std::shared_ptr Build( std::vector& input_nodes, // NOLINT std::vector& output_nodes // NOLINT ); // NOLINT private: int InitDevice(); void ReleaseDevice(); private: bool inited_{false}; int device_id_{0}; bool is_devcie_{false}; aclrtContext context_ptr_{nullptr}; aclrtStream stream_ptr_{nullptr}; }; } // namespace hw_ascend_npu } // namespace lite } // namespace paddle