// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/core/program.h" #include #include #include "lite/model_parser/cpp/block_desc.h" #include "lite/model_parser/cpp/op_desc.h" #include "lite/model_parser/cpp/var_desc.h" #include "lite/operators/conditional_block_op.h" #include "lite/operators/subgraph_op.h" #include "lite/operators/while_op.h" #ifdef LITE_WITH_PRECISION_PROFILE #include "lite/core/profile/precision_profiler.h" #endif namespace paddle { namespace lite { void RuntimeProgram::SaveOpInfosToProgram(cpp::ProgramDesc* desc) { CHECK(desc); // NOTE: RuntimeProgram do not has all meta info, so save model just update // upon origin model CHECK(desc->BlocksSize()); auto main_block = desc->GetBlock(0); main_block->ClearOps(); for (auto& node : instructions_) { auto op_type = node.op()->op_info()->Type(); if (op_type == "subgraph") { auto subgraph_op = const_cast( static_cast(node.op())); int sub_block_idx = subgraph_op->op_info()->GetAttr("sub_block"); if (sub_block_idx < 0) { // It's a new subgraph op when its sub_block_idx < 0, Now we add its // subblock desc to the program desc, Then update its sub_block_idx to // the index of block desc of the program desc. sub_block_idx = desc->BlocksSize(); auto sub_block_desc = subgraph_op->GetSubBlock(); CHECK(sub_block_desc); auto new_block_desc = desc->AddBlock(); *new_block_desc = *sub_block_desc; delete sub_block_desc; subgraph_op->mutable_op_info()->SetAttr("sub_block", sub_block_idx); subgraph_op->SetSubBlock(new_block_desc); // Update main block desc after a new subblock desc is added main_block = desc->GetBlock(0); } } auto op = main_block->AddOp(); *op = *node.op()->op_info(); op->SetAttr(kKernelTypeAttr, node.kernel()->SerializedKernelType()); } } // `UpdateVarsOfProgram` will remove unused var_descs and add new created // vars' descs in the block 0. Now, the type of a new created var can only // be LOD_TENSOR. void RuntimeProgram::UpdateVarsOfProgram(cpp::ProgramDesc* desc) { CHECK(desc); CHECK(desc->BlocksSize()); std::unordered_map origin_var_maps; auto& main_block = *desc->GetBlock(0); auto var_size = main_block.VarsSize(); for (size_t i = 0; i < var_size; i++) { auto v = main_block.GetVar(i); auto name = v->Name(); origin_var_maps.emplace(name, *v); } main_block.ClearVars(); for (auto& node : instructions_) { auto* op = const_cast(node.op()); auto* kernel = node.kernel(); auto* scope = op->scope(); auto in_names = op->op_info()->input_names(); auto out_names = op->op_info()->output_names(); std::vector var_names; var_names.insert(var_names.end(), in_names.begin(), in_names.end()); var_names.insert(var_names.end(), out_names.begin(), out_names.end()); std::sort(var_names.begin(), var_names.end()); var_names.erase(std::unique(var_names.begin(), var_names.end()), var_names.end()); for (auto& var_name : var_names) { auto it = origin_var_maps.find(var_name); if (it != origin_var_maps.end()) { auto* v = main_block.AddVar(); v->SetName((it->second).Name()); v->SetType((it->second).GetType()); v->SetPersistable((it->second).Persistable()); if ((it->second).Name() != "feed" && (it->second).Name() != "fetch") { v->SetShape((it->second).GetShape()); v->SetDataType((it->second).GetDataType()); } } else { // New created vars must be LOD_TENSOR auto* v = main_block.AddVar(); v->SetName(var_name); v->SetType(cpp::VarDesc::Type::LOD_TENSOR); std::string in_arg_name; op->op_info()->GetInputArgname(var_name, &in_arg_name); auto type = kernel->GetInputDeclType(in_arg_name); if (type->IsTensor()) { auto tensor = scope->FindVar(var_name)->GetMutable(); v->SetPersistable(tensor->persistable()); if ((it->second).Name() != "feed" && (it->second).Name() != "fetch") { v->SetShape(tensor->dims().data()); switch (tensor->precision()) { #define SET_DATATYPE(precision__, data_type) \ case PrecisionType::precision__: \ v->SetDataType(data_type); \ break SET_DATATYPE(kFloat, VarDescAPI::VarDataType::FP32); SET_DATATYPE(kInt8, VarDescAPI::VarDataType::INT8); SET_DATATYPE(kInt16, VarDescAPI::VarDataType::INT16); SET_DATATYPE(kInt32, VarDescAPI::VarDataType::INT32); SET_DATATYPE(kInt64, VarDescAPI::VarDataType::INT64); #undef SET_DATATYPE default: LOG(FATAL) << "unknown precision type"; } } } else { CHECK(false) << "unsupported var type"; } } } } } void RuntimeProgram::Run() { #ifdef LITE_WITH_PRECISION_PROFILE auto inst_precision_profiler = paddle::lite::profile::PrecisionProfiler(); std::string precision_profiler_summary = inst_precision_profiler.GetSummaryHeader(); #endif for (auto& inst : instructions_) { #ifndef LITE_WITH_FPGA if (inst.is_feed_fetch_op()) continue; #endif #ifdef LITE_WITH_CUDA if (inst.need_sync()) { inst.Sync(); } #endif inst.Run(); #ifdef LITE_WITH_PRECISION_PROFILE #ifndef LITE_WITH_FPGA precision_profiler_summary += inst_precision_profiler.GetInstPrecision(&inst); #endif #endif // LITE_WITH_PRECISION_PROFILE } #ifdef LITE_WITH_PROFILE LOG(INFO) << "\n" << profiler_.Summary(profile::Type::kDispatch, false, 0); #endif #ifdef LITE_WITH_PRECISION_PROFILE LOG(INFO) << "\n" << precision_profiler_summary; #endif } void Program::Build(const cpp::ProgramDesc& prog) { CHECK(ops_.empty()) << "Executor duplicate Build found"; // Create operators. auto program = prog; CHECK(program.BlocksSize()); auto& main_block = *program.GetBlock(0); for (size_t i = 0; i < main_block.OpsSize(); ++i) { auto& op_desc = *main_block.GetOp(i); auto op_type = op_desc.Type(); // if (op_type == "feed" || op_type == "fetch") continue; VLOG(4) << "create Op [" << op_type << "]"; auto op = LiteOpRegistry::Global().Create(op_type); CHECK(op) << "no Op found for " << op_type; if (op_type == "while" || op_type == "conditional_block" || op_type == "subgraph") { auto sub_block_idx = op_desc.GetAttr("sub_block"); CHECK(sub_block_idx >= 0 && sub_block_idx < program.BlocksSize()) << "Invalid attribute sub_block(" << sub_block_idx << ") for " << op_type; auto sub_block_desc = const_cast(prog).GetBlock( sub_block_idx); CHECK(sub_block_desc); if (op_type == "while") { static_cast(op.get())->SetSubBlock( sub_block_desc); } else if (op_type == "conditional_block") { static_cast(op.get())->SetSubBlock( sub_block_desc); } else if (op_type == "subgraph") { static_cast(op.get())->SetSubBlock( sub_block_desc); } } ops_.emplace_back(std::move(op)); ops_.back()->Attach(op_desc, exec_scope_); } } void Program::PrepareWorkspace(const cpp::ProgramDesc& prog) { CHECK(!exec_scope_) << "Duplicate PrepareWorkspace found"; exec_scope_ = &scope_->NewScope(); // Create Feed and Fetch var. scope_->Var("feed")->GetMutable>(); scope_->Var("fetch")->GetMutable>(); tmp_vars_.push_back("feed"); tmp_vars_.push_back("fetch"); auto VarPrecision2KernlPrecision = [](const lite::VarDescAPI::Type& type) -> PrecisionType { switch (type) { case lite::VarDescAPI::Type::FP32: return PRECISION(kFloat); case lite::VarDescAPI::Type::FP16: return PRECISION(kFP16); case lite::VarDescAPI::Type::INT8: return PRECISION(kInt8); case lite::VarDescAPI::Type::INT16: return PRECISION(kInt16); case lite::VarDescAPI::Type::INT32: return PRECISION(kInt32); case lite::VarDescAPI::Type::INT64: return PRECISION(kInt64); default: // LOG(FATAL) << "not supported type: " << static_cast(type); return PRECISION(kUnk); } }; auto program = prog; CHECK(program.BlocksSize()); for (size_t b = 0; b < program.BlocksSize(); ++b) { auto& main_block = *program.GetBlock(b); for (size_t i = 0; i < main_block.VarsSize(); ++i) { auto& var_desc = *main_block.GetVar(i); if (!var_desc.Persistable()) { if (var_desc.GetType() == lite::VarDescAPI::Type::LOD_TENSOR && VarPrecision2KernlPrecision(var_desc.GetDataType()) != PRECISION(kUnk)) { var_data_type_[var_desc.Name()] = VarPrecision2KernlPrecision(var_desc.GetDataType()); } tmp_vars_.push_back(var_desc.Name()); VLOG(4) << "var name: " << var_desc.Name() << " type is " << static_cast(var_desc.GetType()) << " data type is " << static_cast(var_desc.GetDataType()); exec_scope_->Var(var_desc.Name()); if (b > 0) { VLOG(4) << "var: " << var_desc.Name(); } } else { if (var_desc.Name() == "feed" || var_desc.Name() == "fetch") continue; weights_.push_back(var_desc.Name()); if (var_desc.Persistable()) scope_->Var(var_desc.Name()); } } } } void Instruction::Run() { #ifdef LITE_WITH_PROFILE CHECK(profiler_) << "Profiler pointer of kernel can not be nullptr. " "When LITE_WITH_PROFILE is defined, please set a " "Profiler for Instruction."; profiler_->StartTiming( profile::Type::kCreate, profile_id_, kernel_->mutable_context()); #endif CHECK(op_) << "op null"; CHECK(kernel_) << "kernel null"; if (first_epoch_) { first_epoch_ = false; CHECK(op_->CheckShape()); } if (op_->run_once() && has_run_) { return; } op_->InferShape(); kernel_->Launch(); has_run_ = true; } STL::ostream& operator<<(STL::ostream& os, const Instruction& other) { os << other.kernel_->summary() << "\t(" << other.kernel_->doc() << ")"; return os; } } // namespace lite } // namespace paddle