// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/core/subgraph_bridge_registry.h" #include "lite/kernels/xpu/bridges/graph.h" #include "lite/kernels/xpu/bridges/utility.h" namespace paddle { namespace lite { namespace subgraph { namespace xpu { bool CvtDtype(int dtype, PrecisionType* ptype) { switch (dtype) { case 21: *ptype = PRECISION(kInt8); break; case 1: *ptype = PRECISION(kInt16); break; case 2: *ptype = PRECISION(kInt32); break; case 3: *ptype = PRECISION(kInt64); break; case 5: *ptype = PRECISION(kFloat); break; default: LOG(WARNING) << "[XPU] unsupported date type: " << dtype; return false; } return true; } int CastConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[XPU] Converting " + op_type + "..."; // Get input and output vars and op attributes auto x_name = op_info->Input("X").front(); auto x = scope->FindMutableTensor(x_name); auto out_name = op_info->Output("Out").front(); // BOOL = 0;INT16 = 1;INT32 = 2;INT64 = 3;FP16 = 4;FP32 = 5;FP64 = 6; // SIZE_T = 19;UINT8 = 20;INT8 = 21; int in_dtype = op_info->GetAttr("in_dtype"); PrecisionType in_ptype; if (!CvtDtype(in_dtype, &in_ptype)) { return FAILED; } int out_dtype = op_info->GetAttr("out_dtype"); PrecisionType out_ptype; if (!CvtDtype(out_dtype, &out_ptype)) { return FAILED; } // X node std::shared_ptr x_node = nullptr; if (graph->Has(x_name)) { x_node = graph->Get(x_name); } else { CHECK(x->precision() == in_ptype) << "The data type of input tensor X should be " << PrecisionToStr(in_ptype) << ", but received " << PrecisionToStr(x->precision()); x_node = graph->Add(x_name, *x); } // Cast node graph->Add( out_name, graph->builder_.CreateCast(*x_node->data(), CvtPrecisionType(out_ptype)), PrecisionType(out_ptype)); return SUCCESS; } } // namespace xpu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(cast, kXPU, paddle::lite::subgraph::xpu::CastConverter);