// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/core/subgraph_bridge_registry.h" #include "lite/kernels/mlu/bridges/graph.h" #include "lite/kernels/mlu/bridges/utility.h" namespace paddle { namespace lite { namespace subgraph { namespace mlu { int SplitConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[MLU] Converting " + op_type + "..."; auto x_var_name = op_info->Input("X").front(); auto x = scope->FindVar(x_var_name)->GetMutable(); auto x_dims = x->dims().Vectorize(); auto out_var_name = op_info->Output("Out"); auto param_axis = op_info->GetAttr("axis"); auto num = op_info->GetAttr("num"); auto sections = op_info->GetAttr>("sections"); int64_t sections_num = static_cast(sections.size()); auto output_num = num > 0 ? num : sections_num; std::vector output_tensor; for (auto out_name : out_var_name) { auto out = scope->FindVar(out_name)->GetMutable(); auto out_dims = out->dims().Vectorize(); auto out_tensor = graph->AddNode( out_name, out_dims, CNML_TENSOR, CNML_NCHW, graph->FPType()); output_tensor.push_back(out_tensor->mlu_tensor()); } auto dims = x_dims.size(); int axis = (param_axis < 0) ? (param_axis + dims) : param_axis; CHECK_LE(axis, 4) << "Unsupport dims in mlu concat"; int nhwc_axis = GetAxisNHWC2NCHW(dims)[axis]; CHECK(graph->HasNode(x_var_name)); auto input_tensor = graph->GetNode(x_var_name); cnmlBaseOp_t split_op; cnmlTensor_t inputs = input_tensor->mlu_tensor(); CNML_CALL(cnmlCreateNdSplitOp( &split_op, nhwc_axis, &inputs, 1, output_tensor.data(), output_num)); graph->FuseOp(split_op); CNML_CALL(cnmlDestroyBaseOp(&split_op)); return SUCCESS; } } // namespace mlu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(split, kMLU, paddle::lite::subgraph::mlu::SplitConverter);