// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/core/subgraph_bridge_registry.h" #include "lite/kernels/mlu/bridges/graph.h" #include "lite/kernels/mlu/bridges/utility.h" namespace paddle { namespace lite { namespace subgraph { namespace mlu { int LrnConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[MLU] Converting " + op_type + "..."; // Create lrn node and get params from op auto fp_type = graph->FPType(); auto x_var_name = op_info->Input("X").front(); auto out_var_name = op_info->Output("Out").front(); auto output = scope->FindVar(out_var_name)->GetMutable(); auto output_dims = output->dims().Vectorize(); auto output_tensor = graph->AddNode( out_var_name, output_dims, CNML_TENSOR, CNML_NCHW, fp_type); CHECK(graph->HasNode(x_var_name)); auto input_tensor = graph->GetNode(x_var_name); auto alpha = op_info->GetAttr("alpha"); auto beta = op_info->GetAttr("beta"); auto k = op_info->GetAttr("k"); if (op_info->HasAttr("norm_region")) { CHECK(op_info->GetAttr("norm_region") == "AcrossChannels") << "Unsuport WithinChannel"; } auto local_size = op_info->GetAttr("n"); auto input_scale = op_info->GetInputScale(x_var_name)[0]; VLOG(5) << "lrn input scale: " << input_scale; cnmlLrnOpParam_t param; cnmlBaseOp_t lrn_op; CNML_CALL( cnmlCreateLrnOpParam(¶m, CNML_LRN_V3, local_size, alpha, beta, k)); CNML_CALL(cnmlCreateLrnOp( &lrn_op, param, input_tensor->mlu_tensor(), output_tensor->mlu_tensor())); CNML_CALL(cnmlDestroyLrnOpParam(¶m)); graph->SetComputingDataType( lrn_op, input_tensor->mlu_tensor(), 1 / input_scale); CNML_CALL(cnmlSetOperationComputingDataType( lrn_op, output_tensor->mlu_tensor(), fp_type, nullptr)); graph->FuseOp(lrn_op); CNML_CALL(cnmlDestroyBaseOp(&lrn_op)); return SUCCESS; } } // namespace mlu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(lrn, kMLU, paddle::lite::subgraph::mlu::LrnConverter);