// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/core/subgraph_bridge_registry.h" #include "lite/kernels/mlu/bridges/graph.h" #include "lite/kernels/mlu/bridges/utility.h" namespace paddle { namespace lite { namespace subgraph { namespace mlu { int LayoutConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[MLU] Converting " + op_type + "..."; auto x_var_name = op_info->Input("Input").front(); auto x = scope->FindVar(x_var_name)->GetMutable(); auto out_var_name = op_info->Output("Out").front(); auto output = scope->FindVar(out_var_name)->GetMutable(); auto output_dims = output->dims().Vectorize(); std::shared_ptr output_tensor; CHECK(graph->HasNode(x_var_name)); std::vector axis; auto x_tensor = graph->GetNode(x_var_name); auto x_data_order = x_tensor->dorder(); auto x_dims = x->dims().Vectorize(); if (x_data_order == CNML_NCHW) { switch (x_dims.size()) { case 2: axis = {0, 1}; break; case 3: axis = {0, 2, 1}; break; case 4: axis = {0, 2, 3, 1}; break; case 5: axis = {0, 2, 3, 4, 1}; break; default: CHECK(0) << "Unsupport shape"; } output_tensor = graph->AddNode( out_var_name, output_dims, CNML_TENSOR, CNML_NCHW, x_tensor->dtype()); VLOG(3) << "layout transpose nchw to nhwc" << std::endl; } else { switch (x_dims.size()) { case 2: axis = {0, 1}; break; case 3: axis = {0, 2, 1}; break; case 4: axis = {0, 3, 1, 2}; break; case 5: axis = {0, 4, 1, 2, 3}; break; default: CHECK(0) << "Unsupport shpae"; } VLOG(3) << "layout transpose nhwc to nchw" << std::endl; output_tensor = graph->AddNode(out_var_name, output_dims, CNML_TENSOR, CNML_NCHW, x_tensor->dtype(), CNML_NCHW); } cnmlBaseOp_t layout_op; cnmlNdTransposeOpParam_t transpose_param; CNML_CALL( cnmlCreateNdTransposeOpParam(&transpose_param, axis.data(), axis.size())); CNML_CALL(cnmlCreateNdTransposeProOp(&layout_op, x_tensor->mlu_tensor(), output_tensor->mlu_tensor(), transpose_param)); graph->FuseOp(layout_op); CNML_CALL(cnmlDestroyBaseOp(&layout_op)); return SUCCESS; } } // namespace mlu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(layout, kMLU, paddle::lite::subgraph::mlu::LayoutConverter);