// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/core/subgraph_bridge_registry.h" #include "lite/kernels/mlu/bridges/graph.h" #include "lite/kernels/mlu/bridges/utility.h" namespace paddle { namespace lite { namespace subgraph { namespace mlu { int FlattenConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[MLU] Converting " + op_type + "..."; auto x_var_name = op_info->Input("X").front(); auto out_var_name = op_info->Output("Out").front(); auto x = scope->FindVar(x_var_name)->GetMutable(); auto output = scope->FindVar(out_var_name)->GetMutable(); auto output_dims = output->dims().Vectorize(); // ================== Trans1: NHWC => NCHW =========================== auto input_tensor = graph->GetNode(x_var_name); auto trans_1_axis = std::move(GetAxisNHWC2NCHW(x->dims().size())); auto trans1_out = graph->AddNode(x_var_name + ".trans.i", x->dims().Vectorize(), CNML_TENSOR, CNML_NCHW, graph->FPType(), CNML_NCHW); cnmlBaseOp_t trans1_op{nullptr}; cnmlNdTransposeOpParam_t trans1_param{nullptr}; CNML_CALL(cnmlCreateNdTransposeOpParam( &trans1_param, trans_1_axis.data(), trans_1_axis.size())); CNML_CALL(cnmlCreateNdTransposeProOp(&trans1_op, input_tensor->mlu_tensor(), trans1_out->mlu_tensor(), trans1_param)); // ======================== Trans1 End ================================== // ======================= Flatten op =================================== cnmlBaseOp_t flatten_op; auto trans2_input = graph->AddNode(out_var_name + ".trans.o", output_dims, CNML_TENSOR, CNML_NCHW, graph->FPType(), CNML_NCHW); int cnml_trans2_input_shape[4]; CNML_CALL( cnmlGetTensorShape(trans2_input->mlu_tensor(), cnml_trans2_input_shape)); cnmlReshapeOpParam_t reshape_param{nullptr}; CNML_CALL(cnmlCreateNdReshapeOpParam( &reshape_param, cnml_trans2_input_shape, output->dims().size())); // Use cnmlCreatexxxOpForward to create op. CNML_CALL(cnmlCreateReshapeOp(&flatten_op, reshape_param, trans1_out->mlu_tensor(), trans2_input->mlu_tensor())); // ======================= Flatten End =================================== // ================== Trans2: NCHW => NHWC =============================== auto trans_2_axis = std::move(GetAxisNCHW2NHWC(output->dims().size())); auto output_tensor = graph->AddNode( out_var_name, output_dims, CNML_TENSOR, CNML_NCHW, graph->FPType()); cnmlBaseOp_t trans2_op{nullptr}; cnmlNdTransposeOpParam_t trans2_param{nullptr}; CNML_CALL(cnmlCreateNdTransposeOpParam( &trans2_param, trans_2_axis.data(), trans_2_axis.size())); CNML_CALL(cnmlCreateNdTransposeProOp(&trans2_op, trans2_input->mlu_tensor(), output_tensor->mlu_tensor(), trans2_param)); // ======================== Trans2 End ================================== // ============== DEBUG LOG =============== VLOG(6) << "x_var_name: " << x_var_name; VLOG(6) << "out_var_name: " << out_var_name; VLOG(6) << "input dim: " << x->dims(); VLOG(6) << "output dim: " << output->dims(); // cnmlPrintTensor(input_tensor->mlu_tensor(), CNML_TENSOR); // cnmlPrintTensor(trans1_out->mlu_tensor(), CNML_TENSOR); // cnmlPrintTensor(trans2_input->mlu_tensor(), CNML_TENSOR); // cnmlPrintTensor(output_tensor->mlu_tensor(), CNML_TENSOR); // ============== DEBUG END =============== graph->FuseOp(trans1_op); graph->FuseOp(flatten_op); graph->FuseOp(trans2_op); CNML_CALL(cnmlDestroyBaseOp(&trans1_op)); CNML_CALL(cnmlDestroyBaseOp(&flatten_op)); CNML_CALL(cnmlDestroyBaseOp(&trans2_op)); return SUCCESS; } } // namespace mlu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(flatten, kMLU, paddle::lite::subgraph::mlu::FlattenConverter); REGISTER_SUBGRAPH_BRIDGE(flatten2, kMLU, paddle::lite::subgraph::mlu::FlattenConverter);