// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/core/subgraph_bridge_registry.h" #include "lite/kernels/mlu/bridges/graph.h" #include "lite/kernels/mlu/bridges/utility.h" namespace paddle { namespace lite { namespace subgraph { namespace mlu { int ConcatConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[MLU] Converting " + op_type + "..."; auto x_var_name = op_info->Input("X"); auto out_var_name = op_info->Output("Out").front(); auto output = scope->FindVar(out_var_name)->GetMutable(); auto output_dims = output->dims().Vectorize(); auto param_axis = op_info->GetAttr("axis"); std::vector input_tensor; for (auto x_name : x_var_name) { CHECK(graph->HasNode(x_name)); input_tensor.push_back(graph->GetNode(x_name)->mlu_tensor()); } auto dims = output_dims.size(); int axis = (param_axis < 0) ? (param_axis + dims) : param_axis; CHECK_LT(axis, dims) << "Unsupport dims in mlu concat"; // value of nhwc2nchw_axis is index of nhwc // order of nhwc2nchw_axis is nchw int nhwc_axis = GetAxisNHWC2NCHW(dims)[axis]; auto output_tensor = graph->AddNode( out_var_name, output_dims, CNML_TENSOR, CNML_NCHW, graph->FPType()); cnmlBaseOp_t concat_op; cnmlTensor_t outputs = output_tensor->mlu_tensor(); CNML_CALL(cnmlCreateNdConcatOp(&concat_op, nhwc_axis, input_tensor.data(), x_var_name.size(), &outputs, 1)); graph->FuseOp(concat_op); CNML_CALL(cnmlDestroyBaseOp(&concat_op)); return SUCCESS; } } // namespace mlu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(concat, kMLU, paddle::lite::subgraph::mlu::ConcatConverter);