// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/core/subgraph_bridge_registry.h" #include "lite/kernels/mlu/bridges/graph.h" #include "lite/kernels/mlu/bridges/utility.h" namespace paddle { namespace lite { namespace subgraph { namespace mlu { int CastConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[MLU] Converting " + op_type + "..."; auto x_var_name = op_info->Input("X").front(); auto out_var_name = op_info->Output("Out").front(); auto output = scope->FindVar(out_var_name)->GetMutable(); auto output_dims = output->dims().Vectorize(); auto in_dtype = op_info->GetAttr("in_dtype"); auto out_dtype = op_info->GetAttr("out_dtype"); CHECK(graph->HasNode(x_var_name)); auto x_tensor = graph->GetNode(x_var_name); cnmlDataType_t out_type; cnmlCastType_t cast_type; if (in_dtype == 4 && out_dtype == 5) { cast_type = CNML_CAST_FLOAT16_TO_FLOAT32; out_type = CNML_DATA_FLOAT32; } else if (in_dtype == 5 && out_dtype == 4) { cast_type = CNML_CAST_FLOAT32_TO_FLOAT16; out_type = CNML_DATA_FLOAT16; } else { CHECK(0) << "Unsupported cast type"; } auto output_tensor = graph->AddNode( out_var_name, output_dims, CNML_TENSOR, CNML_NCHW, out_type); cnmlBaseOp_t cast_op; CNML_CALL(cnmlCreateCastOp(&cast_op, cast_type, x_tensor->mlu_tensor(), output_tensor->mlu_tensor())); graph->FuseOp(cast_op); CNML_CALL(cnmlDestroyBaseOp(&cast_op)); return SUCCESS; } } // namespace mlu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(cast, kMLU, paddle::lite::subgraph::mlu::CastConverter);