// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/operators/argmax_op.h" #include #include #include #include "lite/core/op_registry.h" #include "lite/core/subgraph_bridge_registry.h" #include "lite/kernels/mlu/bridges/test_helper.h" #include "lite/kernels/mlu/bridges/utility.h" namespace paddle { namespace lite { namespace subgraph { namespace mlu { template void argmax_ref(const std::shared_ptr op) { Scope* scope = op->scope(); const OpInfo* op_info = op->op_info(); auto x = scope->FindVar(op_info->Input("X").front())->GetMutable(); auto out = scope->FindVar(op_info->Output("Out").front())->GetMutable(); int axis = op_info->GetAttr("axis"); auto x_dims = x->dims(); if (axis < 0) { axis += x_dims.size(); } auto y_shape = x_dims.Vectorize(); y_shape.erase(y_shape.begin() + axis); out->Resize(y_shape); auto out_dims = out->dims(); auto* x_data = x->mutable_data(); auto* out_data = out->mutable_data(); const int size = x_dims[axis]; const int in_channel = x_dims.count(axis, x_dims.size()); const int out_channel = out_dims.count(axis, out_dims.size()); const int in_stride = x_dims.count(axis + 1, x_dims.size()); const int out_stride = x_dims.count(0, axis); // int index = 0; for (int n = 0; n < out_stride; n++) { for (int k = 0; k < in_stride; k++) { const float* in_ptr = x_data + n * in_channel + k; std::vector> vec; vec.resize(size); for (int i = 0; i < size; i++) { vec[i] = std::make_pair(in_ptr[i * in_stride], i); } // sort std::partial_sort(vec.begin(), vec.begin() + 1, vec.end(), std::greater>()); out_dtype* out_ptr = out_data + n * out_channel + k; *out_ptr = vec[0].second; } } } void test_argmax(const std::vector& input_shape, int axis) { // prepare input&output variables Scope scope; std::string x_var_name = "x"; std::string out_var_name = "out"; std::string out_ref_var_name = "out_ref"; auto* x = scope.Var(x_var_name)->GetMutable(); auto* out = scope.Var(out_var_name)->GetMutable(); auto* out_ref = scope.Var(out_ref_var_name)->GetMutable(); x->Resize(input_shape); // initialize input&output data FillTensor(x, -9, 9); // initialize op desc cpp::OpDesc opdesc; opdesc.SetType("arg_max"); opdesc.SetInput("X", {x_var_name}); opdesc.SetOutput("Out", {out_var_name}); opdesc.SetAttr("axis", static_cast(axis)); // create and convert op to MLU model, then run it on MLU auto op = CreateOp(opdesc, &scope); argmax_ref(op); out_ref->CopyDataFrom(*out); Tensor input_x; input_x.Resize(DDim(input_shape)); // change input layout from NCHW to NHWC transpose(x->mutable_data(), input_x.mutable_data(), {static_cast(input_shape[0]), static_cast(input_shape[1]), static_cast(input_shape[2]), static_cast(input_shape[3])}, {0, 2, 3, 1}); x->CopyDataFrom(input_x); LaunchOp(op, {x_var_name}, {out_var_name}); auto* out_data = out->mutable_data(); auto* out_ref_data = out_ref->mutable_data(); std::vector out_shape = input_shape; out_shape[axis] = 1; Tensor output_trans; output_trans.Resize(out_shape); // Change output layout from NHWC to NCHW transpose(out_data, output_trans.mutable_data(), {static_cast(out_shape[0]), static_cast(out_shape[2]), static_cast(out_shape[3]), static_cast(out_shape[1])}, {0, 3, 1, 2}); out_data = output_trans.mutable_data(); for (int i = 0; i < out->dims().production(); i++) { EXPECT_NEAR(out_data[i], out_ref_data[i], 1e-2); } } TEST(MLUBridges, arg_max) { test_argmax({1, 2, 3, 4}, 1); test_argmax({1, 2, 3, 4}, 2); test_argmax({1, 2, 3, 4}, 3); } } // namespace mlu } // namespace subgraph } // namespace lite } // namespace paddle USE_SUBGRAPH_BRIDGE(arg_max, kMLU);