// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/operators/pool_op.h" #include "lite/core/subgraph_bridge_registry.h" #include "lite/kernels/huawei_ascend_npu/bridges/graph.h" #include "lite/kernels/huawei_ascend_npu/bridges/utility.h" namespace paddle { namespace lite { namespace subgraph { namespace huawei_ascend_npu { int PoolConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[HUAWEI_ASCEND_NPU] Converting " + op_type + "..."; // Get input and output vars and op attributes auto x_name = op_info->Input("X").front(); auto x = scope->FindMutableTensor(x_name); auto x_dims = x->dims(); auto out_name = op_info->Output("Out").front(); auto pooling_type = op_info->GetAttr("pooling_type"); auto global_pooling = op_info->GetAttr("global_pooling"); auto ksize = op_info->GetAttr>("ksize"); auto paddings = op_info->GetAttr>("paddings"); CHECK_EQ(op_info->GetAttr("exclusive"), true) << "[HUAWEI_ASCEND_NPU] Only exclusive=true is supported for Huawei " "Ascend NPU DDK."; // X node std::shared_ptr x_node = nullptr; if (graph->Has(x_name)) { x_node = graph->Get(x_name); } else { x_node = graph->Add(x_name, *x); } // pool mode: 0:max pooling or 1:avg pooling int mode = 0; if (pooling_type == "max") { mode = 0; } else if (pooling_type == "avg") { mode = 1; } else { LOG(WARNING) << "[HUAWEI_ASCEND_NPU] Unsupported pooling type: " << pooling_type; return FAILED; } // pad algorithm std::string padding_algorithm(""); if (op_info->HasAttr("padding_algorithm")) { padding_algorithm = op_info->GetAttr("padding_algorithm"); } // paddings and strides if (paddings.size() == 2L) { for (size_t i = 0; i < 2L; ++i) { int copy_pad = *(paddings.begin() + 2 * i); paddings.insert(paddings.begin() + 2 * i + 1, copy_pad); } } CHECK_EQ(paddings.size(), 4L) << "[HUAWEI_ASCEND_NPU] Paddings size should " "be the same or twice as the inputs size."; bool adaptive = false; if (op_info->HasAttr("adaptive")) { adaptive = op_info->GetAttr("adaptive"); } auto strides = op_info->GetAttr>("strides"); lite::operators::UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm, x->dims(), strides, ksize); // Ascend restriction: padT should equals padB, and padL should equals padR if (paddings[0] != paddings[1]) { LOG(WARNING) << "[HUAWEI_ASCEND_NPU] Padding top should equals to padding " "bottom in Huawei Ascend NPU DDK, padding top is: " << paddings[0] << ", padding bottom is: " << paddings[1]; return FAILED; } if (paddings[2] != paddings[3]) { LOG(WARNING) << "[HUAWEI_ASCEND_NPU] Padding left should equals to padding " "right in Huawei Ascend NPU DDK, padding left is: " << paddings[2] << ", padding right is: " << paddings[3]; return FAILED; } // ceil mode bool ceil_mode = op_info->HasAttr("ceil_mode") && op_info->GetAttr("ceil_mode"); // Pooling node auto pool_node = graph->Add(out_name); auto pool_op = pool_node->data(); pool_op->set_input_x(*x_node->data()); pool_op->set_attr_mode(mode); pool_op->set_attr_global_pooling(global_pooling); pool_op->set_attr_window(ge::Operator::OpListInt({ksize[0], ksize[1]})); pool_op->set_attr_stride(ge::Operator::OpListInt({strides[0], strides[1]})); pool_op->set_attr_pad(ge::Operator::OpListInt( {paddings[0], paddings[1], paddings[2], paddings[3]})); // "0" (ceil mode) or "1" (floor mode). Defaults to "0" if (!ceil_mode) { pool_op->set_attr_ceil_mode(1); } INPUT_UPDATE(pool_op, x, x_node); OUTPUT_UPDATE(pool_op, y, pool_node); return REBUILD_WHEN_SHAPE_CHANGED; } } // namespace huawei_ascend_npu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE( pool2d, kHuaweiAscendNPU, paddle::lite::subgraph::huawei_ascend_npu::PoolConverter);