// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "lite/backends/opencl/cl_include.h" #include "lite/core/kernel.h" #include "lite/core/op_registry.h" #include "lite/kernels/opencl/image_helper.h" #include "lite/operators/op_params.h" #include "lite/utils/replace_stl/stream.h" namespace paddle { namespace lite { namespace kernels { namespace opencl { #define USE_BUFFER_FOR_CONV1x1_BIAS class Conv2d1x1Image2DCompute : public KernelLite { public: using param_t = operators::ConvParam; void PrepareForRun() override { const auto& param = *param_.get_mutable(); if (param.fuse_relu) { build_options_ += " -DRELU"; } const bool has_bias = param.bias != nullptr; const bool is_element_wise_bias = has_bias && param.output->dims() == param.bias->dims(); if (has_bias) { build_options_ += is_element_wise_bias ? " -DBIASE_ELE" : " -DBIASE_CH"; } auto& context = ctx_->As(); if (param.x->dims()[1] % 4 == 0) { context.cl_context()->AddKernel(kernel_func_name_simple_, "image/conv2d_1x1_kernel.cl", build_options_); } else { context.cl_context()->AddKernel( kernel_func_name_, "image/conv2d_1x1_kernel.cl", build_options_); } } void Run() override { const auto& param = *param_.get_mutable(); auto input_dims = param.x->dims(); auto paddings = *param.paddings; auto strides = param.strides; auto* input_image = param.x->data(); auto* filter_image = param.filter->data(); auto filter_dims = param.filter->dims(); auto output_dims = param.output->dims(); int input_width = input_dims[3]; int input_height = input_dims[2]; int output_width = output_dims[3]; int output_height = output_dims[2]; auto out_image_shape = InitImageDimInfoWith(output_dims); auto* out_image = param.output->mutable_data( out_image_shape["width"], out_image_shape["height"]); const bool has_bias = param.bias != nullptr; const bool is_element_wise_bias = has_bias && param.output->dims() == param.bias->dims(); int offset = static_cast(param.filter->dims()[2]) / 2 - static_cast(paddings[0]); // calc input_c_block auto input_image_shape = InitImageDimInfoWith(input_dims); int input_c_block = input_image_shape["width"] / input_dims[3]; int input_c = input_dims[1]; auto dilations = *param.dilations; const std::vector& default_work_size = DefaultWorkSize(output_dims, DDim(std::vector{ static_cast(out_image_shape["width"]), static_cast(out_image_shape["height"])})); int c_block = default_work_size[0]; int w = default_work_size[1]; int nh = default_work_size[2]; VLOG(4) << "============ conv2d_1x1 params ============"; VLOG(4) << "input_image_shape: " << input_image_shape["width"] << "," << input_image_shape["height"]; VLOG(4) << "input_c_block: " << input_c_block; VLOG(4) << "input_c: " << input_c; VLOG(4) << "input_image: " << input_image; VLOG(4) << "filter_dims: " << filter_dims; VLOG(4) << "filter_image: " << filter_image; VLOG(4) << "output_dims: " << output_dims; VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", " << out_image_shape["height"]; VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1]; VLOG(4) << "has bias: " << has_bias; VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias; VLOG(4) << "strides: " << strides[0] << "," << strides[1]; VLOG(4) << "offset: " << offset; VLOG(4) << "dilations.size : " << dilations.size(); VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1]; VLOG(4) << "default work size{c_block, w, nh}: " << "{" << c_block << ", " << w << ", " << nh << "" << "}"; CHECK_GE(dilations.size(), 2); CHECK(dilations[0] == dilations[1]); CHECK_GE(input_dims.size(), 4); CHECK_GE(paddings.size(), 2); CHECK(paddings[0] == paddings[1]); CHECK_GE(strides.size(), 2); CHECK(strides[0] == strides[1]); // handle bias use buffer for channel wise , use image for element wise const cl::Buffer* bias_buf = nullptr; const cl::Image2D* bias_image = nullptr; if (has_bias) { #ifndef USE_BUFFER_FOR_CONV1x1_BIAS is_element_wise_bias ? (bias_image = param.bias->data()) : (bias_buf = param.bias->data()); #else bias_image = param.bias->data(); #endif } auto& context = ctx_->As(); CHECK(context.cl_context() != nullptr); STL::stringstream kernel_key; if (input_dims[1] % 4 == 0) { kernel_key << kernel_func_name_simple_ << build_options_; } else { kernel_key << kernel_func_name_ << build_options_; } auto kernel = context.cl_context()->GetKernel(kernel_key.str()); int maped_w = maptofactor(w, 4); VLOG(4) << "kernel_key: " << kernel_key.str(); VLOG(4) << "kernel ready ... " << kernel_key.str(); VLOG(4) << "maped_w: " << maped_w; cl_int status; int arg_idx = 0; status = kernel.setArg(arg_idx, c_block); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, maped_w); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, nh); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *input_image); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *filter_image); CL_CHECK_FATAL(status); if (has_bias) { #ifndef USE_BUFFER_FOR_CONV1x1_BIAS if (is_element_wise_bias != 0) { VLOG(4) << "set bias_image: "; status = kernel.setArg(++arg_idx, *bias_image); } else { VLOG(4) << "set bias_buf: "; status = kernel.setArg(++arg_idx, *bias_buf); } #else status = kernel.setArg(++arg_idx, *bias_image); #endif CL_CHECK_FATAL(status); } status = kernel.setArg(++arg_idx, *out_image); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, strides[0]); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, offset); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, input_c_block); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, input_c); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, dilations[0]); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, input_width); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, input_height); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, output_width); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, output_height); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, w); CL_CHECK_FATAL(status); auto global_work_size = cl::NDRange{static_cast(default_work_size.data()[0]), static_cast(maped_w), static_cast(default_work_size.data()[2])}; VLOG(4) << "out_image: " << out_image; VLOG(4) << "global_work_size[3D]: {" << global_work_size[0] << "," << global_work_size[1] << "," << global_work_size[2] << "}"; status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel( kernel, cl::NullRange, global_work_size, cl::NullRange, nullptr, event_.get()); CL_CHECK_FATAL(status); context.cl_wait_list()->emplace(out_image, event_); } private: std::string kernel_func_name_{"conv2d_1x1"}; std::string kernel_func_name_simple_{"conv2d_1x1_simple"}; std::string build_options_{"-DCL_DTYPE_float"}; std::shared_ptr event_{new cl::Event}; }; } // namespace opencl } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(conv2d_1x1, kOpenCL, kFloat, kImageDefault, paddle::lite::kernels::opencl::Conv2d1x1Image2DCompute, image2d) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kImageDefault))}) .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kImageDefault))}) .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kImageNW))}) .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kImageDefault))}) .Finalize();