// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include "lite/core/op_registry.h" #include "lite/fluid/eigen.h" namespace paddle { namespace lite { namespace kernels { namespace x86 { template using EigenTensor = lite::fluid::EigenTensor; template using EigenScalar = lite::fluid::EigenScalar; template using EigenVector = lite::fluid::EigenVector; template // const lite::Context& context, void ReduceFunctor(const lite::Tensor& input, lite::Tensor* output, const std::vector& dims, bool keep_dim) { auto x = EigenTensor::From(input); auto reduce_dim = Eigen::array(); auto x_rank = static_cast(x.dimensions().size()); for (size_t i = 0; i < dims.size(); ++i) { if (dims[i] < 0) { reduce_dim[i] = x_rank + dims[i]; } else { reduce_dim[i] = dims[i]; } } Functor functor; if (D == 1) { auto out = EigenScalar::From(output); functor(&x, &out, reduce_dim); } else { auto out = EigenTensor::From(*output, output->dims()); functor(&x, &out, reduce_dim); } } } // namespace x86 } // namespace kernels } // namespace lite } // namespace paddle