// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // TODO(FrostML): shaffle_channel cannot pass on CI, but ok in local machine. // Open this. /*#include #include "lite/api/paddle_use_kernels.h" #include "lite/api/paddle_use_ops.h" #include "lite/core/arena/framework.h" namespace paddle { namespace lite { class ShuffleChannelComputeTester : public arena::TestCase { protected: // common attributes for this op. std::string input_ = "X"; std::string output_ = "Out"; int group_ = 4; DDim dims_{{10, 16, 4, 4}}; public: ShuffleChannelComputeTester(const Place& place, const std::string& alias, int group) : TestCase(place, alias), group_(group) {} void RunBaseline(Scope* scope) override { auto* out = scope->NewTensor(output_); CHECK(out); out->Resize(dims_); auto* outputs = out->mutable_data(); auto* x = scope->FindTensor(input_); const auto* inputs = x->data(); DDim x_dims = x->dims(); int num = x->dims()[0]; int channel = x->dims()[1]; int height = x->dims()[2]; int width = x->dims()[3]; int fea_size = channel * height * width; int spatial_size = height * width; int group_row = group_; int group_col = channel / group_; for (int k = 0; k < num; ++k) { inputs += k * fea_size; outputs += k * fea_size; for (int i = 0; i < group_row; ++i) { for (int j = 0; j < group_col; ++j) { const float* p_i = inputs + (i * group_col + j) * spatial_size; float* p_o = outputs + (j * group_row + i) * spatial_size; memcpy(p_o, p_i, spatial_size * sizeof(float)); } } } } void PrepareOpDesc(cpp::OpDesc* op_desc) { op_desc->SetType("shuffle_channel"); op_desc->SetInput("X", {input_}); op_desc->SetOutput("Out", {output_}); op_desc->SetAttr("group", group_); } void PrepareData() override { std::vector data(dims_.production()); for (int i = 0; i < dims_.production(); i++) { data[i] = i * 1.1; } SetCommonTensor(input_, dims_, data.data()); } }; void test_shuffle_channel(Place place) { for (int group : {4}) { std::unique_ptr tester( new ShuffleChannelComputeTester(place, "def", group)); arena::Arena arena(std::move(tester), place, 2e-5); arena.TestPrecision(); } } TEST(ShuffleChannel, precision) { // #ifdef LITE_WITH_X86 // Place place(TARGET(kX86)); // #endif #ifdef LITE_WITH_ARM Place place(TARGET(kARM)); test_shuffle_channel(place); #endif } } // namespace lite } // namespace paddle */