/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #ifdef FUSION_DECONVBNRELU_OP #pragma once #include #include #include "framework/operator.h" #include "framework/program/program-optimize/fusion_op_register.h" #include "operators/kernel/deconv_bn_relu_kernel.h" namespace paddle_mobile { namespace operators { using std::string; using std::vector; class FusionDeconvBNReluMatcher : public framework::FusionOpMatcher { public: FusionDeconvBNReluMatcher() { node_ = framework::Node(G_OP_TYPE_CONV_TRANSPOSE); node_ > std::make_shared(G_OP_TYPE_BATCHNORM) > std::make_shared(G_OP_TYPE_RELU); } void FolderNodes( framework::Node *node, std::vector> *removed_nodes) { node->Folder(node_.Depth(), Type(), {{G_OP_TYPE_BATCHNORM, {{"Scale", "Scale"}, {"Mean", "Mean"}, {"Bias", "Bias"}, {"Variance", "Variance"}}}}, removed_nodes); } std::string Type() { return G_OP_TYPE_FUSION_DECONV_BN_RELU; } }; template class FusionDeconvBNReluOp : public framework::OperatorWithKernel< DeviceType, FusionDeconvBNReluParam, operators::DeconvBNReluKernel> { public: FusionDeconvBNReluOp(const string &type, const VariableNameMap &inputs, const VariableNameMap &outputs, const framework::AttributeMap &attrs, framework::Scope *scope) : framework::OperatorWithKernel< DeviceType, FusionDeconvBNReluParam, operators::DeconvBNReluKernel>(type, inputs, outputs, attrs, scope) {} void InferShape() const { auto input = this->param_.Input(); auto in_dims = input->dims(); auto filter = this->param_.Filter(); auto filter_dims = filter->dims(); std::vector strides = this->param_.Strides(); std::vector paddings = this->param_.Paddings(); std::vector dilations = this->param_.Dilations(); int groups = this->param_.Groups(); PADDLE_MOBILE_ENFORCE( in_dims.size() == 4 || in_dims.size() == 5, "ConvTransposeOp intput should be 4-D or 5-D tensor."); PADDLE_MOBILE_ENFORCE( in_dims.size() == filter_dims.size(), "ConvTransposeOp input dimension and filter dimension " "should be the same."); PADDLE_MOBILE_ENFORCE( in_dims.size() - strides.size() == 2U, "ConvTransposeOp input dimension and strides dimension should " "be consistent."); PADDLE_MOBILE_ENFORCE(paddings.size() == strides.size(), "ConvTransposeOp paddings dimension and strides " "dimension should be the same."); PADDLE_MOBILE_ENFORCE(paddings.size() == dilations.size(), "ConvTransposeOp paddings dimension and dilations " "dimension should be the same."); PADDLE_MOBILE_ENFORCE( in_dims[1] == filter_dims[0], "In ConvTransposeOp, The number of input channels should " "be equal to the number of filter's channels."); std::vector output_shape({in_dims[0], filter_dims[1] * groups}); for (size_t i = 0; i < strides.size(); ++i) { auto filter_extent = dilations[i] * (filter_dims[i + 2] - 1) + 1; output_shape.push_back((in_dims[i + 2] - 1) * strides[i] - 2 * paddings[i] + filter_extent); } this->param_.Output()->Resize(framework::make_ddim(output_shape)); } protected: }; } // namespace operators } // namespace paddle_mobile #endif // FUSION_DECONV_BN_RELU_OP