/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include "../test_helper.h" #include "io/paddle_inference_api.h" using namespace paddle_mobile; // NOLINT PaddleMobileConfig GetConfig() { PaddleMobileConfig config; config.precision = PaddleMobileConfig::FP32; config.device = PaddleMobileConfig::kGPU_CL; config.pre_post_type = PaddleMobileConfig::NONE_PRE_POST; config.prog_file = "../models/gan_yanlong_check2/model"; config.param_file = "../models/gan_yanlong_check2/params"; config.lod_mode = false; config.load_when_predict = false; return config; } int main() { PaddleMobileConfig config = GetConfig(); auto predictor = CreatePaddlePredictor(config); // factor int factor_len = 1 * 256 * 1 * 1; std::vector factor_v; std::vector factor_dims{1, 256, 1, 1}; GetInput(g_test_image_1x3x224x224, &factor_v, factor_dims); PaddleTensor factor; factor.shape = std::vector({1, 256, 1, 1}); factor.data = PaddleBuf(factor_v.data(), factor_len * sizeof(float)); factor.dtype = PaddleDType::FLOAT32; factor.layout = LayoutType::LAYOUT_CHW; // remap int remap_len = 1 * 256 * 256 * 2; std::vector remap_v; std::vector remap_dims{1, 256, 256, 2}; GetInput(g_test_image_1x3x224x224, &remap_v, remap_dims); PaddleTensor remap; remap.shape = std::vector({1, 256, 256, 2}); remap.data = PaddleBuf(remap_v.data(), remap_len * sizeof(float)); remap.dtype = PaddleDType::FLOAT32; remap.layout = LayoutType::LAYOUT_CHW; // image int image_len = 1 * 3 * 256 * 256; std::vector image_v; std::vector image_dims{1, 3, 256, 256}; GetInput(g_test_image_1x3x224x224, &image_v, image_dims); PaddleTensor image; image.shape = std::vector({1, 3, 256, 256}); image.data = PaddleBuf(image_v.data(), image_len * sizeof(float)); image.dtype = PaddleDType::FLOAT32; image.layout = LayoutType::LAYOUT_CHW; PaddleTensor output0; output0.shape = std::vector({}); output0.data = PaddleBuf(); output0.dtype = PaddleDType::FLOAT32; output0.layout = LayoutType::LAYOUT_CHW; PaddleTensor output1; output1.shape = std::vector({}); output1.data = PaddleBuf(); output1.dtype = PaddleDType::FLOAT32; output1.layout = LayoutType::LAYOUT_CHW; PaddleTensor output2; output2.shape = std::vector({}); output2.data = PaddleBuf(); output2.dtype = PaddleDType::FLOAT32; output2.layout = LayoutType::LAYOUT_CHW; PaddleTensor output3; output3.shape = std::vector({}); output3.data = PaddleBuf(); output3.dtype = PaddleDType::FLOAT32; output3.layout = LayoutType::LAYOUT_CHW; predictor->Feed("x2paddle_mul_factor", factor); predictor->Feed("x2paddle_base_remap", remap); predictor->Feed("x2paddle_image", image); predictor->Run(); predictor->Fetch("save_infer_model/scale_0", &output0); predictor->Fetch("save_infer_model/scale_1", &output1); predictor->Fetch("save_infer_model/scale_2", &output2); predictor->Fetch("save_infer_model/scale_3", &output3); float* out_ptr0 = reinterpret_cast(output0.data.data()); float* out_ptr1 = reinterpret_cast(output1.data.data()); std::cout << " print output0 : " << std::endl; int numel = output0.data.length() / sizeof(float); int stride = numel / 20; stride = stride > 0 ? stride : 1; for (size_t j = 0; j < numel; j += stride) { std::cout << out_ptr0[j] << " "; } std::cout << std::endl; std::cout << " print output1 : " << std::endl; numel = output1.data.length() / sizeof(float); stride = numel / 20; stride = stride > 0 ? stride : 1; for (size_t j = 0; j < numel; j += stride) { std::cout << out_ptr1[j] << " "; } std::cout << std::endl; return 0; }