/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include "../test_helper.h" #include "io/paddle_inference_api.h" using namespace paddle_mobile; // NOLINT PaddleMobileConfig GetConfig() { PaddleMobileConfig config; config.precision = PaddleMobileConfig::FP32; config.device = PaddleMobileConfig::kGPU_CL; config.pre_post_type = PaddleMobileConfig::NONE_PRE_POST; config.prog_file = "../models/ercy/model"; config.param_file = "../models/ercy/params"; config.lod_mode = false; config.load_when_predict = false; return config; } int main() { PaddleMobileConfig config = GetConfig(); auto predictor = CreatePaddlePredictor(config); // reliable int re_len = 1 * 1 * 64 * 72; std::vector re_v; std::vector re_dims{1, 1, 64, 72}; GetInput(g_test_image_1x3x224x224, &re_v, re_dims); PaddleTensor re; re.shape = std::vector({1, 1, 64, 72}); re.data = PaddleBuf(re_v.data(), re_len * sizeof(float)); re.dtype = PaddleDType::FLOAT32; re.layout = LayoutType::LAYOUT_CHW; // grid int grid_len = 1 * 64 * 72 * 2; std::vector grid_v; std::vector grid_dims{1, 64, 72, 2}; GetInput(g_test_image_1x3x224x224, &grid_v, grid_dims); PaddleTensor grid; grid.shape = std::vector({1, 64, 72, 2}); grid.data = PaddleBuf(grid_v.data(), grid_len * sizeof(float)); grid.dtype = PaddleDType::FLOAT32; grid.layout = LayoutType::LAYOUT_CHW; // last_input int last_len = 1 * 128 * 64 * 72; std::vector last_v; std::vector last_dims{1, 128, 64, 72}; GetInput(g_test_image_1x3x224x224, &last_v, last_dims); PaddleTensor last; last.shape = std::vector({1, 128, 64, 72}); last.data = PaddleBuf(last_v.data(), last_len * sizeof(float)); last.dtype = PaddleDType::FLOAT32; last.layout = LayoutType::LAYOUT_CHW; // input_rgb int input_rgb_len = 1 * 4 * 256 * 288; std::vector input_rgb_v; std::vector input_rgb_dims{1, 4, 256, 288}; GetInput(g_test_image_1x3x224x224, &input_rgb_v, input_rgb_dims); PaddleTensor input_rgb; input_rgb.shape = std::vector({1, 4, 256, 288}); input_rgb.data = PaddleBuf(input_rgb_v.data(), input_rgb_len * sizeof(float)); input_rgb.dtype = PaddleDType::FLOAT32; input_rgb.layout = LayoutType::LAYOUT_CHW; PaddleTensor output0; output0.shape = std::vector({}); output0.data = PaddleBuf(); output0.dtype = PaddleDType::FLOAT32; output0.layout = LayoutType::LAYOUT_CHW; PaddleTensor output1; output1.shape = std::vector({}); output1.data = PaddleBuf(); output1.dtype = PaddleDType::FLOAT32; output1.layout = LayoutType::LAYOUT_CHW; predictor->Feed("reliable", re); predictor->Feed("grid", grid); predictor->Feed("last_input", last); predictor->Feed("input_rgb", input_rgb); predictor->Run(); predictor->Fetch("save_infer_model/scale_0", &output0); predictor->Fetch("save_infer_model/scale_1", &output1); float* out_ptr0 = reinterpret_cast(output0.data.data()); float* out_ptr1 = reinterpret_cast(output1.data.data()); std::cout << " print output0 : " << std::endl; int numel = output0.data.length() / sizeof(float); int stride = numel / 20; stride = stride > 0 ? stride : 1; for (size_t j = 0; j < numel; j += stride) { std::cout << out_ptr0[j] << " "; } std::cout << std::endl; std::cout << " print output1 : " << std::endl; numel = output1.data.length() / sizeof(float); stride = numel / 20; stride = stride > 0 ? stride : 1; for (size_t j = 0; j < numel; j += stride) { std::cout << out_ptr1[j] << " "; } std::cout << std::endl; return 0; }