// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "lite/backends/fpga/KD/debugger.hpp" #include "lite/kernels/fpga/prior_box_compute.h" namespace paddle { namespace lite { namespace kernels { namespace fpga { using float16 = zynqmp::float16; inline void ExpandAspectRatios(const std::vector& input_aspect_ratior, bool flip, std::vector* output_aspect_ratior) { constexpr float epsilon = 1e-6; output_aspect_ratior->clear(); output_aspect_ratior->push_back(1.0f); for (size_t i = 0; i < input_aspect_ratior.size(); ++i) { float ar = input_aspect_ratior[i]; bool already_exist = false; for (size_t j = 0; j < output_aspect_ratior->size(); ++j) { if (fabs(ar - output_aspect_ratior->at(j)) < epsilon) { already_exist = true; break; } } if (!already_exist) { output_aspect_ratior->push_back(ar); if (flip) { output_aspect_ratior->push_back(1.0f / ar); } } } } void PriorBoxCompute::PrepareForRun() { auto& param = this->Param(); bool is_flip = param.flip; bool is_clip = param.clip; std::vector min_size = param.min_sizes; std::vector max_size = param.max_sizes; std::vector aspect_ratio = param.aspect_ratios; std::vector variance = param.variances_; int img_w = param.img_w; int img_h = param.img_h; float step_w = param.step_w; float step_h = param.step_h; float offset = param.offset; std::vector aspect_ratios_vec; ExpandAspectRatios(aspect_ratio, is_flip, &aspect_ratios_vec); size_t prior_num = aspect_ratios_vec.size() * min_size.size(); prior_num += max_size.size(); std::vector order = param.order; bool min_max_aspect_ratios_order = param.min_max_aspect_ratios_order; int win1 = param.input->dims()[3]; int hin1 = param.input->dims()[2]; DDim shape_out({hin1, win1, prior_num, 4}); param.boxes->Resize(shape_out); param.variances->Resize(shape_out); param.boxes->mutable_data(); param.variances->mutable_data(); // ==================================================== zynqmp::PriorBoxParam& priobox_param = pe_.param(); priobox_param.input = param.input->ZynqTensor(); priobox_param.image = param.image->ZynqTensor(); priobox_param.outputBoxes = param.boxes->ZynqTensor(); priobox_param.outputVariances = param.variances->ZynqTensor(); priobox_param.minSizes = param.min_sizes; priobox_param.maxSizes = param.max_sizes; priobox_param.aspectRatios = param.aspect_ratios; priobox_param.variances = param.variances_; priobox_param.minMaxAspectRatiosOrder = min_max_aspect_ratios_order; priobox_param.flip = param.flip; priobox_param.clip = param.clip; priobox_param.stepW = param.step_w; priobox_param.stepH = param.step_h; priobox_param.offset = param.offset; pe_.init(); pe_.apply(); } void PriorBoxCompute::Run() { pe_.dispatch(); #ifdef FPGA_PRINT_TENSOR zynqmp::PriorBoxParam& priobox_param = pe_.param(); Debugger::get_instance().registerOutput("pb_boxes", priobox_param.outputBoxes); Debugger::get_instance().registerOutput("pb_variances", priobox_param.outputVariances); #endif } } // namespace fpga } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(prior_box, kFPGA, kFP16, kNHWC, paddle::lite::kernels::fpga::PriorBoxCompute, def) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .BindInput("Image", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .BindOutput("Boxes", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("Variances", {LiteType::GetTensorTy(TARGET(kARM))}) .Finalize(); // REGISTER_LITE_KERNEL(prior_box, // kFPGA, // kFP16, // kNHWC, // paddle::lite::kernels::fpga::PriorBoxCompute, // def) // .BindInput("Input", {LiteType::GetTensorTy(TARGET(kFPGA), // PRECISION(kFP16), // DATALAYOUT(kNHWC))}) // .BindInput("Image", {LiteType::GetTensorTy(TARGET(kFPGA), // PRECISION(kFP16), // DATALAYOUT(kNHWC))}) // .BindOutput("Boxes", {LiteType::GetTensorTy(TARGET(kARM))}) // .BindOutput("Variances", {LiteType::GetTensorTy(TARGET(kARM))}) // .Finalize();