// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "lite/backends/opencl/cl_include.h" #include "lite/core/kernel.h" #include "lite/core/op_registry.h" #include "lite/kernels/opencl/image_helper.h" #include "lite/operators/op_params.h" #include "lite/utils/replace_stl/stream.h" namespace paddle { namespace lite { namespace kernels { namespace opencl { class DepthwiseConv2dCompute : public KernelLite { public: using param_t = operators::ConvParam; std::string doc() const override { return "DepthwiseConv2d using cl::Buffer, kFloat"; } void PrepareForRun() override { const auto& param = *param_.get_mutable(); if (param.fuse_relu) { build_options_ += " -DRELU"; } auto& context = ctx_->As(); context.cl_context()->AddKernel( kernel_func_name_, "buffer/depthwise_conv2d_kernel.cl", build_options_); } void Run() override { const auto& param = *param_.get_mutable(); auto x_dims = param.x->dims(); auto filter_dims = param.filter->dims(); auto output_dims = param.output->dims(); auto paddings = *param.paddings; auto strides = param.strides; auto& context = ctx_->As(); CHECK(context.cl_context() != nullptr); auto* input_buf = param.x->data(); auto* filter_buf = param.filter->data(); auto* bias_buf = param.bias == nullptr ? static_cast(nullptr) : param.bias->data(); auto* output_buf = param.output->mutable_data(TARGET(kOpenCL)); STL::stringstream kernel_key; kernel_key << kernel_func_name_ << build_options_; auto kernel = context.cl_context()->GetKernel(kernel_key.str()); cl_int status; auto numel = output_dims.production(); int arg_idx = 0; status = kernel.setArg(arg_idx, static_cast(numel)); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *input_buf); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(x_dims[2])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(x_dims[3])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(output_dims[1])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(output_dims[2])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(output_dims[3])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(filter_dims[2])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(filter_dims[3])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(strides[0])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(strides[1])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(paddings[0])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(paddings[1])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *output_buf); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *filter_buf); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *bias_buf); CL_CHECK_FATAL(status); auto global_work_size = cl::NDRange(static_cast(numel)); status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel( kernel, cl::NullRange, global_work_size, cl::NullRange, nullptr, event_.get()); CL_CHECK_FATAL(status); context.cl_wait_list()->emplace(output_buf, event_); } private: std::string kernel_func_name_{"depthwise_conv2d"}; std::string build_options_{"-DCL_DTYPE=float"}; std::shared_ptr event_{new cl::Event}; }; class DepthwiseConv2dComputeFP16Image : public KernelLite { public: using param_t = operators::ConvParam; std::string doc() const override { return "DepthwiseConv2d using cl::Image2D/kImageDefault, kFP16"; } void PrepareForRun() override { const auto& param = *param_.get_mutable(); if (param.fuse_relu) { build_options_ += " -DRELU"; } auto& context = ctx_->As(); context.cl_context()->AddKernel( kernel_func_name_, "image/depthwise_conv2d_kernel.cl", build_options_); } void Run() override { const auto& param = *param_.get_mutable(); auto x_dims = param.x->dims(); auto filter_dims = param.filter->dims(); auto output_dims = param.output->dims(); auto paddings = *param.paddings; auto strides = param.strides; auto dilations = *param.dilations; int offset = filter_dims[2] / 2 - paddings[0]; int input_c_block = (x_dims[1] + 3) / 4; auto& context = ctx_->As(); CHECK(context.cl_context() != nullptr); auto* input_img = param.x->data(); auto* filter_img = param.filter->data(); auto* bias_img = param.bias == nullptr ? static_cast(nullptr) : param.bias->data(); auto image_shape = InitImageDimInfoWith(output_dims); auto* output_img = param.output->mutable_data( image_shape["width"], image_shape["height"]); STL::stringstream kernel_key; kernel_key << kernel_func_name_ << build_options_; auto kernel = context.cl_context()->GetKernel(kernel_key.str()); int c_block = (output_dims[1] + 3) / 4; int w = output_dims[3]; int nh = output_dims[0] * output_dims[2]; auto global_work_size = cl::NDRange(c_block, w, nh); VLOG(4) << "setArg"; VLOG(4) << "c_block = " << c_block; VLOG(4) << "w = " << w; VLOG(4) << "nh = " << nh; VLOG(4) << "strides = " << strides[0]; VLOG(4) << "offset = " << offset; VLOG(4) << "dilations = " << dilations[0]; VLOG(4) << "input_c_block = " << input_c_block; VLOG(4) << "x_dims[3] = " << x_dims[3]; VLOG(4) << "x_dims[2] = " << x_dims[2]; VLOG(4) << "output_dims[3] = " << output_dims[3]; VLOG(4) << "output_dims[2] = " << output_dims[2]; cl_int status; int arg_idx = 0; status = kernel.setArg(arg_idx, static_cast(c_block)); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(w)); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(nh)); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *input_img); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *filter_img); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *output_img); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(strides[0])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(offset)); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(dilations[0])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(input_c_block)); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(x_dims[3])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(x_dims[2])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(output_dims[3])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(output_dims[2])); CL_CHECK_FATAL(status); status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel( kernel, cl::NullRange, global_work_size, cl::NullRange, nullptr, event_.get()); CL_CHECK_FATAL(status); context.cl_wait_list()->emplace(output_img, event_); } private: std::string kernel_func_name_{"depth_conv2d_3x3"}; std::string build_options_{"-DCL_DTYPE_half"}; std::shared_ptr event_{new cl::Event}; }; class DepthwiseConv2d3x3s1ComputeFP16Image : public KernelLite { public: using param_t = operators::ConvParam; std::string doc() const override { return "DepthwiseConv2d3x3s1 using cl::Image2D/kImageDefault, kFP16"; } void PrepareForRun() override { const auto& param = *param_.get_mutable(); if (param.fuse_relu) { build_options_ += " -DRELU"; } auto& context = ctx_->As(); context.cl_context()->AddKernel( kernel_func_name_, "image/depthwise_conv2d_kernel.cl", build_options_); } void Run() override { const auto& param = *param_.get_mutable(); auto x_dims = param.x->dims(); auto filter_dims = param.filter->dims(); auto output_dims = param.output->dims(); auto paddings = *param.paddings; auto strides = param.strides; auto dilations = *param.dilations; auto& context = ctx_->As(); CHECK(context.cl_context() != nullptr); auto* input_img = param.x->data(); auto* filter_img = param.filter->data(); auto* bias_img = param.bias == nullptr ? static_cast(nullptr) : param.bias->data(); auto image_shape = InitImageDimInfoWith(output_dims); auto* output_img = param.output->mutable_data( image_shape["width"], image_shape["height"]); STL::stringstream kernel_key; kernel_key << kernel_func_name_ << build_options_; auto kernel = context.cl_context()->GetKernel(kernel_key.str()); int c_block = (output_dims[1] + 3) / 4; int w = output_dims[3]; int nh = output_dims[0] * output_dims[2]; int w_blk_size = 2; int w_blk = (w + w_blk_size - 1) / w_blk_size; auto global_work_size = cl::NDRange(c_block, w_blk, nh); cl_int status; int arg_idx = 0; status = kernel.setArg(arg_idx, static_cast(c_block)); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(w_blk)); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(nh)); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *input_img); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *filter_img); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *output_img); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(strides[0])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(paddings[0])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(dilations[0])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(x_dims[1])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(x_dims[3])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(x_dims[2])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(output_dims[3])); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, static_cast(output_dims[2])); CL_CHECK_FATAL(status); status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel( kernel, cl::NullRange, global_work_size, cl::NullRange, nullptr, event_.get()); CL_CHECK_FATAL(status); context.cl_wait_list()->emplace(output_img, event_); } private: std::string kernel_func_name_{"depth_conv2d_3x3s1"}; std::string build_options_{"-DCL_DTYPE_half"}; std::shared_ptr event_{new cl::Event}; }; class DepthwiseConv2dBasicComputeFP32Image : public KernelLite { public: using param_t = operators::ConvParam; std::string doc() const override { return "DepthwiseConv2d basic using cl::Image2D/kImageDefault, kFloat32"; } void PrepareForRun() override { const auto& param = *param_.get_mutable(); const bool has_bias = param.bias != nullptr; const bool is_element_wise_bias = has_bias && param.output->dims() == param.bias->dims(); if (param.fuse_relu) { build_options_ += " -DRELU"; } if (has_bias) { build_options_ += is_element_wise_bias ? " -DBIASE_ELE" : " -DBIASE_CH"; } auto& context = ctx_->As(); context.cl_context()->AddKernel(kernel_func_name_, "image/depthwise_conv2d_basic_kernel.cl", build_options_); } void Run() override { const auto& param = *param_.get_mutable(); auto input_dims = param.x->dims(); auto paddings = *param.paddings; auto strides = param.strides; auto* input_image = param.x->data(); auto* filter_image = param.filter->data(); auto filter_dims = param.filter->dims(); auto output_dims = param.output->dims(); int input_width = input_dims[3]; int input_height = input_dims[2]; int output_width = output_dims[3]; int output_height = output_dims[2]; int filter_width = filter_dims[3]; int filter_height = filter_dims[2]; auto out_image_shape = InitImageDimInfoWith(output_dims); auto* out_image = param.output->mutable_data( out_image_shape["width"], out_image_shape["height"]); const bool has_bias = param.bias != nullptr; const bool is_element_wise_bias = has_bias && param.output->dims() == param.bias->dims(); int offset = static_cast(param.filter->dims()[2]) / 2 - static_cast(paddings[0]); // calc input_c_block auto input_image_shape = InitImageDimInfoWith(input_dims); int input_c_block = input_image_shape["width"] / input_dims[3]; int input_c = input_dims[1]; auto dilations = *param.dilations; const std::vector& default_work_size = DefaultWorkSize(output_dims, DDim(std::vector{ static_cast(out_image_shape["width"]), static_cast(out_image_shape["height"])})); int c_block = default_work_size[0]; int w = default_work_size[1]; int nh = default_work_size[2]; VLOG(4) << "============ depthwise conv2d params ============"; VLOG(4) << "input_image_shape: " << input_image_shape["width"] << "," << input_image_shape["height"]; VLOG(4) << "input_c_block: " << input_c_block; VLOG(4) << "input_c: " << input_c; VLOG(4) << "input_image: " << input_image; VLOG(4) << "filter_dims: " << filter_dims; VLOG(4) << "filter_image: " << filter_image; VLOG(4) << "output_dims: " << output_dims; VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", " << out_image_shape["height"]; VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1]; VLOG(4) << "has bias: " << has_bias; VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias; VLOG(4) << "strides: " << strides[0] << "," << strides[1]; VLOG(4) << "offset: " << offset; VLOG(4) << "dilations.size : " << dilations.size(); VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1]; VLOG(4) << "default work size{c_block, w, nh}: " << "{" << c_block << ", " << w << ", " << nh << "" << "}"; CHECK_GE(dilations.size(), 2); CHECK(dilations[0] == dilations[1]); CHECK_GE(input_dims.size(), 4); CHECK_GE(paddings.size(), 2); CHECK(paddings[0] == paddings[1]); CHECK_GE(strides.size(), 2); CHECK(strides[0] == strides[1]); // handle bias use buffer for channel wise , use image for element wise const cl::Buffer* bias_buf = nullptr; const cl::Image2D* bias_image = nullptr; if (has_bias) { bias_image = param.bias->data(); } auto& context = ctx_->As(); CHECK(context.cl_context() != nullptr); STL::stringstream kernel_key; kernel_key << kernel_func_name_ << build_options_; auto kernel = context.cl_context()->GetKernel(kernel_key.str()); VLOG(4) << "kernel_key: " << kernel_key.str(); VLOG(4) << "kernel ready ... " << kernel_key.str(); VLOG(4) << "w: " << w; cl_int status; int arg_idx = 0; status = kernel.setArg(arg_idx, c_block); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, w); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, nh); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *input_image); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, *filter_image); CL_CHECK_FATAL(status); if (has_bias) { VLOG(4) << "set bias_image: "; status = kernel.setArg(++arg_idx, *bias_image); CL_CHECK_FATAL(status); } status = kernel.setArg(++arg_idx, *out_image); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, strides[0]); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, offset); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, input_c_block); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, dilations[0]); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, input_width); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, input_height); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, output_width); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, output_height); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, filter_width); CL_CHECK_FATAL(status); status = kernel.setArg(++arg_idx, filter_height); CL_CHECK_FATAL(status); auto global_work_size = cl::NDRange{static_cast(default_work_size.data()[0]), static_cast(default_work_size.data()[1]), static_cast(default_work_size.data()[2])}; VLOG(4) << "out_image: " << out_image; VLOG(4) << "global_work_size[3D]: {" << global_work_size[0] << "," << global_work_size[1] << "," << global_work_size[2] << "}"; status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel( kernel, cl::NullRange, global_work_size, cl::NullRange, nullptr, event_.get()); CL_CHECK_FATAL(status); context.cl_wait_list()->emplace(out_image, event_); } private: std::string kernel_func_name_{"depth_conv2d"}; std::string build_options_{"-DCL_DTYPE_float"}; std::shared_ptr event_{new cl::Event}; }; } // namespace opencl } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(depthwise_conv2d, kOpenCL, kFloat, kNCHW, paddle::lite::kernels::opencl::DepthwiseConv2dCompute, def) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kOpenCL))}) .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kOpenCL))}) .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kOpenCL))}) .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kOpenCL))}) .Finalize(); REGISTER_LITE_KERNEL( depthwise_conv2d, kOpenCL, kFP16, kImageDefault, paddle::lite::kernels::opencl::DepthwiseConv2dComputeFP16Image, image2d) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault))}) .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault))}) .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageNW))}) .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFP16), DATALAYOUT(kImageDefault))}) .Finalize(); REGISTER_LITE_KERNEL( depthwise_conv2d_basic, kOpenCL, kFloat, kImageDefault, paddle::lite::kernels::opencl::DepthwiseConv2dBasicComputeFP32Image, image2d) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kImageDefault))}) .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kImageDefault))}) .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kImageNW))}) .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kImageDefault))}) .Finalize();