// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/npu/bridges/registry.h" #include "lite/kernels/rknpu/bridges/graph.h" #include "lite/kernels/rknpu/bridges/utility.h" namespace paddle { namespace lite { namespace subgraph { namespace rknpu { int FCConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[RKNPU] Converting " + op_type + "..."; auto input_name = op_info->Input("Input").front(); auto input = scope->FindMutableTensor(input_name); auto input_dims = input->dims(); CHECK_GE(input_dims.size(), 2UL); auto w_name = op_info->Input("W").front(); auto w = scope->FindMutableTensor(w_name); auto w_dims = w->dims(); CHECK_EQ(w_dims.size(), 2UL); auto out_name = op_info->Output("Out").front(); auto output = scope->FindMutableTensor(out_name); int in_num_col_dims = op_info->GetAttr("in_num_col_dims"); int m = input_dims.Slice(0, in_num_col_dims).production(); int k = input_dims.Slice(in_num_col_dims, input_dims.size()).production(); int n = w_dims[1]; CHECK_EQ(k * n, w_dims.production()); VLOG(3) << "[RKNPU] input dims: " << input_dims << " w dims: " << w_dims << " m: " << m << " k: " << k << " n: " << n; // for quantization bool enable_int8 = false; float input_scale = 1.0; float output_scale = 1.0; int bit_length = 8; DataLayoutType layout = DATALAYOUT(kNCHW); PrecisionType precision = PRECISION(kFloat); if (op_info->HasAttr("enable_int8")) { enable_int8 = op_info->GetAttr("enable_int8"); CHECK(op_info->HasInputScale(input_name)); input_scale = op_info->GetInputScale(input_name)[0]; bit_length = op_info->GetAttr("bit_length"); CHECK(op_info->HasOutputScale(out_name)); output_scale = op_info->GetOutputScale(out_name)[0]; if (enable_int8) { precision = PRECISION(kInt8); } } // Create input node and reshape it to (m, k, 1, 1) std::shared_ptr input_node = nullptr; if (graph->Has(input_name)) { input_node = graph->Get(input_name); } else { input_node = graph->Add(input_name, *input); } // Create w const node, set its shape to (n, k) and fill with // the transposed w tensor auto* transpose_w = scope->NewTensor(w_name + "/transpose"); std::shared_ptr trans_w_node = nullptr; transpose_w->Resize({n, k}); transpose_w->set_persistable(true); if (enable_int8) { QuantizationInfo filter_qnt; CHECK(op_info->HasInputScale(w_name)); auto weight_scale = op_info->GetInputScale(w_name); filter_qnt.enable_int8 = enable_int8; filter_qnt.scale = weight_scale; filter_qnt.quant_bits = bit_length; auto transpose_w_data = transpose_w->mutable_data(); auto w_data = w->mutable_data(); for (int i = 0; i < k; i++) { for (int j = 0; j < n; j++) { transpose_w_data[j * k + i] = w_data[i * n + j]; } } trans_w_node = graph->Add(w_name, *transpose_w, precision, layout, filter_qnt); } else { auto transpose_w_data = transpose_w->mutable_data(); auto w_data = w->mutable_data(); for (int i = 0; i < k; i++) { for (int j = 0; j < n; j++) { transpose_w_data[j * k + i] = w_data[i * n + j]; } } trans_w_node = graph->Add(w_name, *transpose_w, precision, layout); } // Add bias node if bias tensor exists std::shared_ptr bias_node = nullptr; if (HasInputArg(op_info, scope, "Bias")) { auto bias_name = op_info->Input("Bias").front(); if (graph->Has(bias_name)) { bias_node = graph->Get(bias_name); } else { auto bias = scope->FindMutableTensor(bias_name); auto bias_dims = bias->dims(); auto bias_data_size = bias_dims.production(); std::vector bias_shape = {n}; VLOG(3) << "[RKNPU] bias precision: " << PrecisionToStr(bias->precision()); // We need to quantize bias if (enable_int8) { auto bias_name_qnt = bias_name + "/qnt"; auto* bias_qnt = scope->NewTensor(bias_name_qnt); CHECK(op_info->HasInputScale(w_name)); auto weight_scale = op_info->GetInputScale(w_name); bias_qnt->Resize(bias_shape); bias_qnt->set_persistable(true); bias_qnt->set_precision(PrecisionType::kInt32); auto* bias_qnt_data = bias_qnt->mutable_data(); auto* bias_data = bias->mutable_data(); QuantizationInfo qnt; qnt.enable_int8 = enable_int8; qnt.quant_bits = 32; qnt.scale.resize(weight_scale.size()); for (int i = 0; i < weight_scale.size(); i++) { qnt.scale[i] = input_scale * weight_scale[i]; } auto dtype_max = static_cast((1 << (qnt.quant_bits - 1)) - 1); auto dtype_min = static_cast(0 - dtype_max); for (int i = 0; i < n; i++) { bias_qnt_data[i] = std::min(std::max(static_cast(bias_data[i] / qnt.scale[i]), dtype_min), dtype_max); } bias_node = graph->Add( bias_name, *bias_qnt, bias_qnt->precision(), layout, qnt); } else { bias_node = graph->Add(bias_name, *bias, bias_shape); } } } else { auto bias_name = w_name + "/bias/dummy"; auto* bias = scope->NewTensor(bias_name); std::vector bias_shape = {n}; bias->Resize(bias_shape); bias->set_persistable(true); if (enable_int8) { CHECK(op_info->HasInputScale(w_name)); auto weight_scale = op_info->GetInputScale(w_name); bias->set_precision(PrecisionType::kInt32); auto* bias_data = bias->mutable_data(); for (int i = 0; i < n; i++) { bias_data[i] = 0; } QuantizationInfo qnt; qnt.enable_int8 = enable_int8; qnt.quant_bits = 32; qnt.scale.resize(weight_scale.size()); for (int i = 0; i < weight_scale.size(); i++) { qnt.scale[i] = input_scale * weight_scale[i]; } bias_node = graph->Add(bias_name, *bias, bias->precision(), layout, qnt); } else { bias->set_precision(PrecisionType::kFloat); auto* bias_data = bias->mutable_data(); for (int i = 0; i < n; i++) { bias_data[i] = 0.0; } bias_node = graph->Add(bias_name, *bias, bias_shape); } } std::shared_ptr output_node = nullptr; QuantizationInfo output_qnt; output_qnt.enable_int8 = enable_int8; if (enable_int8) { output_qnt.quant_bits = bit_length; output_qnt.scale.clear(); output_qnt.scale.push_back(output_scale); output->mutable_data(); } output_node = graph->Add(out_name, *output, precision, layout, output_qnt); std::vector> inputs; std::vector> outputs; inputs.push_back(input_node->data()); inputs.push_back(trans_w_node->data()); inputs.push_back(bias_node->data()); outputs.push_back(output_node->data()); rk::nn::FCAttr attrs; attrs.weights = n; attrs.has_relu = false; auto rGraph = graph->GetHandle(); auto fc = rGraph->AddOperator( rk::nn::OperatorType::FULLCONNECT, inputs, outputs, &attrs); return REBUILD_WHEN_SHAPE_CHANGED; } } // namespace rknpu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(fc, kRKNPU, paddle::lite::subgraph::rknpu::FCConverter);