// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/host/expand_as_compute.h" #include namespace paddle { namespace lite { namespace kernels { namespace host { template void ExpandAsCompute::Run() { auto& param = this->template Param(); const auto* x = param.X; auto* out = param.Out; const auto* target = param.Target; std::vector expand_times; const T* src = x->template data(); T* dst = out->template mutable_data(); // int dims = expand_times.size(); for (int i = 0; i < target->dims().size(); ++i) { int times = target->dims()[i] / x->dims()[i]; expand_times.push_back(times); } int dims = target->dims().size(); DDim in_shape = x->dims(); int inner_num = 1; int pos = dims - 1; int outer_num = in_shape.count(0, pos); inner_num *= in_shape[pos]; for (int j = 0; j < outer_num; ++j) { for (int k = 0; k < expand_times[pos]; ++k) { memcpy(dst + (j * expand_times[pos] + k) * inner_num, src + j * inner_num, sizeof(T) * inner_num); } } inner_num *= expand_times[pos]; for (int i = dims - 2; i >= 0; --i) { int outer_num = in_shape.count(0, i); inner_num *= in_shape[i]; for (int j = outer_num - 1; j >= 0; --j) { for (int k = expand_times[i] - 1; k >= 0; --k) { memcpy(dst + (j * expand_times[i] + k) * inner_num, dst + j * inner_num, sizeof(T) * inner_num); } } inner_num *= expand_times[i]; } } } // namespace host } // namespace kernels } // namespace lite } // namespace paddle using expand_as_float = paddle::lite::kernels::host::ExpandAsCompute; REGISTER_LITE_KERNEL(expand_as, kHost, kFloat, kAny, expand_as_float, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kFloat), DATALAYOUT(kAny))}) .BindInput("Target", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kFloat), DATALAYOUT(kAny))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kFloat), DATALAYOUT(kAny))}) .Finalize();