// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "lite/api/paddle_use_kernels.h" #include "lite/api/paddle_use_ops.h" #include "lite/core/arena/framework.h" namespace paddle { namespace lite { class Pad2dComputeTester : public arena::TestCase { protected: // common attributes for this op. std::string input_ = "X"; std::string output_ = "Out"; DDim dims_{{1, 1, 14, 14}}; std::string mode_{"constant"}; std::vector paddings_; float pad_value_ = 0.f; std::string data_format_{"NCHW"}; public: Pad2dComputeTester(const Place& place, const std::string& alias, std::string mode, std::vector paddings, float pad_value, std::string data_format) : TestCase(place, alias), mode_(mode), paddings_(paddings), pad_value_(pad_value), data_format_(data_format) {} void RunBaseline(Scope* scope) override { LOG(INFO) << "into runbase"; auto* out = scope->NewTensor(output_); CHECK(out); int out_h = dims_[2] + paddings_[0] + paddings_[1]; int out_w = dims_[3] + paddings_[2] + paddings_[3]; out->Resize(lite::DDim({dims_[0], dims_[1], out_h, out_w})); auto* out_data = out->mutable_data(); auto* x = scope->FindTensor(input_); const auto* x_data = x->data(); LOG(INFO) << "get nums"; auto output_dims = out->dims(); int n = output_dims[0]; int c = output_dims[1]; int h = output_dims[2]; int w = output_dims[3]; int pad_top = paddings_[0]; int pad_bottom = paddings_[1]; int pad_left = paddings_[2]; int pad_right = paddings_[3]; int pad_mode; if (mode_ == "constant") { pad_mode = 0; } else if (mode_ == "reflect") { pad_mode = 1; } else if (mode_ == "edge") { pad_mode = 2; } else { LOG(FATAL) << "Unknown mode type"; } float pad_value = pad_value_; int in_w = w - pad_left - pad_right; int in_h = h - pad_bottom - pad_top; int spatial_size_out = w * h; int spatial_size_in = in_w * in_h; #pragma omp parallel for for (int i = 0; i < n * c; ++i) { const float* din_batch = x_data + i * spatial_size_in; float* dout_batch = out_data + i * spatial_size_out; int in_y = 0; int in_x = 0; for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { switch (pad_mode) { case 0: in_y = y - pad_top; in_x = x - pad_left; dout_batch[y * w + x] = (in_x >= 0 && in_x < in_w) && (in_y >= 0 && in_y < in_h) ? din_batch[in_y * in_w + in_x] : pad_value; break; case 1: in_x = std::min(std::max(pad_left, x), in_w + pad_left - 1) - pad_left; in_y = std::min(std::max(pad_top, y), in_h + pad_top - 1) - pad_top; dout_batch[y * w + x] = din_batch[in_y * in_w + in_x]; break; case 2: in_y = y - pad_top; in_x = x - pad_left; in_y = std::max(in_y, -in_y); in_y = std::min(in_y, 2 * in_h - in_y - 2); in_x = std::max(in_x, -in_x); in_x = std::min(in_x, 2 * in_w - in_x - 2); dout_batch[y * w + x] = din_batch[in_y * in_w + in_x]; break; default: LOG(ERROR) << "ERROR: unknown pad mode:" << pad_mode; } } } } } void PrepareOpDesc(cpp::OpDesc* op_desc) { op_desc->SetType("pad2d"); op_desc->SetInput("X", {input_}); op_desc->SetOutput("Out", {output_}); op_desc->SetAttr("mode", mode_); op_desc->SetAttr("pad_value", pad_value_); op_desc->SetAttr("paddings", paddings_); op_desc->SetAttr("data_format", data_format_); } void PrepareData() override { std::vector data(dims_.production()); for (int i = 0; i < dims_.production(); i++) { data[i] = i * 1; } SetCommonTensor(input_, dims_, data.data()); } }; void TestPad2d(const Place& place) { std::string data_format = "NCHW"; for (int pad_top : {0, 1}) { for (int pad_bottom : {0, 1}) { for (int pad_left : {0, 1}) { for (int pad_right : {0, 1}) { std::vector paddings{pad_top, pad_bottom, pad_left, pad_right}; for (std::string pad_mode : {"constant", "edge", "reflect"}) { for (float pad_value : {0.f, 1.0f}) { LOG(INFO) << "pad param: " << pad_mode << " " << pad_value << " " << paddings[0] << " " << paddings[1] << " " << paddings[2] << " " << paddings[3]; std::unique_ptr tester(new Pad2dComputeTester( place, "def", pad_mode, paddings, pad_value, data_format)); arena::Arena arena(std::move(tester), place, 2e-5); arena.TestPrecision(); } } } } } } } TEST(Scale, precision) { #ifdef LITE_WITH_X86 Place place(TARGET(kX86)); #endif #ifdef LITE_WITH_ARM Place place(TARGET(kARM)); TestPad2d(place); #endif } } // namespace lite } // namespace paddle