// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include //NOLINT #include #include "lite/api/cxx_api.h" #include "lite/api/paddle_use_kernels.h" #include "lite/api/paddle_use_ops.h" #include "lite/api/paddle_use_passes.h" #include "lite/api/test_helper.h" #include "lite/core/op_registry.h" DEFINE_string(input_img_txt_path, "", "if set input_img_txt_path, read the img filename as input."); namespace paddle { namespace lite { const int g_batch_size = 1; const int g_thread_num = 1; void instance_run() { lite::Predictor predictor; std::vector passes; std::vector valid_places({Place{TARGET(kBM), PRECISION(kFloat)}, Place{TARGET(kX86), PRECISION(kFloat)}}); predictor.Build(FLAGS_model_dir, "", "", valid_places, passes); auto* input_tensor = predictor.GetInput(0); input_tensor->Resize(DDim(std::vector( {g_batch_size, 3, FLAGS_im_height, FLAGS_im_width}))); auto* data = input_tensor->mutable_data(); auto item_size = input_tensor->dims().production(); if (FLAGS_input_img_txt_path.empty()) { for (int i = 0; i < item_size; i++) { data[i] = 1; } } else { for (int j = 0; j < g_batch_size; j++) { std::fstream fs(FLAGS_input_img_txt_path, std::ios::in); if (!fs.is_open()) { LOG(FATAL) << "open input_img_txt error."; } for (int i = 0; i < item_size / g_batch_size; i++) { fs >> data[i]; } data += j * item_size / g_batch_size; } } for (int i = 0; i < FLAGS_warmup; ++i) { predictor.Run(); } auto start = GetCurrentUS(); for (int i = 0; i < FLAGS_repeats; ++i) { predictor.Run(); } LOG(INFO) << "================== Speed Report ==================="; LOG(INFO) << "Model: " << FLAGS_model_dir << ", threads num " << FLAGS_threads << ", warmup: " << FLAGS_warmup << ", repeats: " << FLAGS_repeats << ", spend " << (GetCurrentUS() - start) / FLAGS_repeats / 1000.0 << " ms in average."; auto out = predictor.GetOutputs(); FILE* fp = fopen("result.txt", "wb"); for (int i = 0; i < out.size(); i++) { auto* out_data = out[i]->data(); LOG(INFO) << out[i]->numel(); for (int j = 0; j < out[i]->numel(); j++) { fprintf(fp, "%f\n", out_data[j]); } } fclose(fp); } void TestModel(const std::vector& valid_places) { std::vector> instances_vec; for (int i = 0; i < g_thread_num; ++i) { instances_vec.emplace_back(new std::thread(&instance_run)); } for (int i = 0; i < g_thread_num; ++i) { instances_vec[i]->join(); } } TEST(Classify, test_bm) { std::vector valid_places({Place{TARGET(kBM), PRECISION(kFloat)}, Place{TARGET(kX86), PRECISION(kFloat)}}); TestModel(valid_places); } } // namespace lite } // namespace paddle