// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/host/assign_compute.h" namespace paddle { namespace lite { namespace kernels { namespace host { void AssignCompute::Run() { auto& param = Param(); if (param.X != nullptr) { param.Out->CopyDataFrom(*param.X); } else if (param.X_array != nullptr) { auto x_array = param.X_array; auto out_array = param.Out_array; out_array->resize(x_array->size()); for (size_t i = 0; i < x_array->size(); i++) { out_array->at(i).CopyDataFrom(x_array->at(i)); } } else { LOG(FATAL) << "x or x_array of assign must be set."; } } } // namespace host } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL( assign, kHost, kAny, kAny, paddle::lite::kernels::host::AssignCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny))}) .Finalize(); REGISTER_LITE_KERNEL(assign, kHost, kAny, kAny, paddle::lite::kernels::host::AssignCompute, def_tensor_array) .BindInput("X", {LiteType::GetTensorListTy(TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny))}) .BindOutput("Out", {LiteType::GetTensorListTy(TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny))}) .Finalize();