// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/core/program.h" #include #include #include #include "lite/model_parser/cpp_desc.h" #include "lite/operators/conditional_block_op.h" #include "lite/operators/subgraph_op.h" #include "lite/operators/while_op.h" #ifdef LITE_WITH_PRECISION_PROFILE #include "lite/core/profile/precision_profiler.h" #endif namespace paddle { namespace lite { void RuntimeProgram::SaveToProgram( std::shared_ptr program_desc) { CHECK(program_desc); auto block_size = program_desc->BlocksSize(); CHECK_GT(block_size, 0) << "No block found!"; // TODD(hong19860320) Only support updating the block desc which already // exists in the origin program desc CHECK_LE(block_size, instructions_.size()) << "Invalid block size, expected (0," << instructions_.size() << "] but got " << block_size; for (size_t block_idx = 0; block_idx < block_size; ++block_idx) { auto block_desc = program_desc->GetBlock(block_idx); // Record all of the origin vars in the origin block std::map origin_var_maps; auto var_size = block_desc->VarsSize(); for (size_t var_idx = 0; var_idx < var_size; ++var_idx) { auto v = block_desc->GetVar(var_idx); origin_var_maps.emplace(v->Name(), *v); } // Update the ops and vars for each block according to the instructions block_desc->ClearVars(); block_desc->ClearOps(); std::set already_added_vars; for (auto& inst : instructions_[block_idx]) { auto* op = const_cast(inst.op()); auto* op_info = op->op_info(); auto op_type = op_info->Type(); auto* kernel = inst.mutable_kernel(); auto* scope = op->scope(); // Update the origin vars which are referred by the instructions // Add the new vars which are created in the passes and referred by the // instructions auto var_names = op_info->input_names(); auto out_names = op_info->output_names(); // Combine input and output vars and delete the duplicates var_names.insert(var_names.end(), out_names.begin(), out_names.end()); std::stable_sort(var_names.begin(), var_names.end()); var_names.erase(std::unique(var_names.begin(), var_names.end()), var_names.end()); for (auto& var_name : var_names) { if (already_added_vars.count(var_name)) continue; auto* v = block_desc->AddVar(); v->SetName(var_name); auto it = origin_var_maps.find(var_name); if (it != origin_var_maps.end()) { v->SetType(it->second.GetType()); v->SetPersistable(it->second.Persistable()); if (var_name != "feed" && var_name != "fetch") { v->SetShape(it->second.GetShape()); v->SetDataType(it->second.GetDataType()); } } else { std::string arg_name; const Type* decl_type; if (op_info->GetInputArgname(var_name, &arg_name)) { decl_type = kernel->GetInputDeclType(arg_name); } else { op_info->GetOutputArgname(var_name, &arg_name); decl_type = kernel->GetOutputDeclType(arg_name); } if (decl_type->IsTensor()) { v->SetType(cpp::VarDesc::Type::LOD_TENSOR); auto tensor = scope->FindVar(var_name)->GetMutable(); v->SetPersistable(tensor->persistable()); if (var_name != "feed" && var_name != "fetch") { v->SetShape(tensor->dims().data()); auto precision = tensor->precision(); switch (precision) { #define SET_DATATYPE(precision__, data_type) \ case PrecisionType::precision__: \ v->SetDataType(data_type); \ LOG(INFO) << "Update var " << var_name << " done"; \ break SET_DATATYPE(kBool, VarDescAPI::VarDataType::BOOL); SET_DATATYPE(kFloat, VarDescAPI::VarDataType::FP32); SET_DATATYPE(kFP16, VarDescAPI::VarDataType::FP16); SET_DATATYPE(kInt8, VarDescAPI::VarDataType::INT8); SET_DATATYPE(kInt16, VarDescAPI::VarDataType::INT16); SET_DATATYPE(kInt32, VarDescAPI::VarDataType::INT32); SET_DATATYPE(kInt64, VarDescAPI::VarDataType::INT64); #undef SET_DATATYPE default: LOG(WARNING) << "Unknown precision type " << PrecisionToStr(precision) << " for var " << var_name << " in op " << op_type; } } } else if (decl_type->IsTensorList()) { // Set persistable=false for tensor array v->SetType(cpp::VarDesc::Type::LOD_TENSOR_ARRAY); v->SetPersistable(false); } else { CHECK(false) << "Unsupported decl type " << *decl_type << " for var " << var_name << " in op " << op_type; } } already_added_vars.insert(var_name); } // Replace all of origin ops with the instructions auto op_desc = block_desc->AddOp(); *op_desc = *op_info; op_desc->SetAttr(kKernelTypeAttr, kernel->SerializedKernelType()); if (op_type == "subgraph" && !op_info->GetAttr("sub_block")) { // It's a new subgraph op when its sub_block_idx = 0, Now we add its // subblock desc to the program desc, Then update its sub_block_idx to // the index of block desc of the program desc. auto subgraph_op = static_cast(op); auto sub_program_desc = subgraph_op->GetProgramDesc(); CHECK(sub_program_desc); auto sub_block_desc = program_desc->AddBlock(); *sub_block_desc = *sub_program_desc->GetBlock(0); subgraph_op->SetProgramDesc(program_desc); op_desc->SetAttr("sub_block", program_desc->BlocksSize() - 1); // Attach op and kernel again to update the new block_idx and // program_desc subgraph_op->Attach(*op_desc, scope); subgraph_op->AttachKernel(kernel); // Update the pointer of block desc after a new subblock desc is added block_desc = program_desc->GetBlock(block_idx); } } } } // Create runtime program from sub_block desc according to block_idx and // program_desc, which is used for while/conditional_block/subgraph op. RuntimeProgram::RuntimeProgram( const std::shared_ptr& program_desc, Scope* exec_scope, int block_idx) : exec_scope_(exec_scope) { #ifdef LITE_WITH_OPENCL using OpenCLContext = Context; std::unique_ptr local_ctx(new KernelContext()); local_ctx->As().InitOnce(); #endif CHECK(program_desc); auto block_size = program_desc->BlocksSize(); CHECK(block_size) << "No block found!"; CHECK(block_idx >= 0 && block_idx < block_size) << "Invalid block index, expected [0," << (block_size - 1) << "] but got " << block_idx; auto block_desc = program_desc->GetBlock(block_idx); instructions_.resize(kRootBlockIdx + 1); auto op_size = block_desc->OpsSize(); for (size_t op_idx = 0; op_idx < op_size; op_idx++) { auto op_desc = block_desc->GetOp(op_idx); CHECK(op_desc); std::string op_type = op_desc->Type(); // if (op_type == "feed" || op_type == "fetch") continue; // Create op and pick up the best kernel auto op = LiteOpRegistry::Global().Create(op_type); CHECK(op) << "no Op found for " << op_type; if (op_type == "while") { static_cast(op.get())->SetProgramDesc(program_desc); } else if (op_type == "conditional_block") { static_cast(op.get())->SetProgramDesc( program_desc); } else if (op_type == "subgraph") { static_cast(op.get())->SetProgramDesc( program_desc); } op->Attach(*op_desc, exec_scope_); std::unique_ptr kernel; if (op_desc->HasAttr(kKernelTypeAttr)) { // Create op and pick up the best kernel according to the // kKernelTypeAttr attribute auto kernel_type = op_desc->GetAttr(kKernelTypeAttr); std::string alias; Place place; KernelBase::ParseKernelType(kernel_type, &op_type, &alias, &place); VLOG(3) << "Found the attr '" << kKernelTypeAttr << "': " << kernel_type << " for " << op_type; auto kernels = op->CreateKernels({place}); CHECK_GT(kernels.size(), 0) << "No kernels found for " << op_type; auto it = std::find_if( kernels.begin(), kernels.end(), [&](std::unique_ptr& it) { return it->alias() == alias; }); CHECK(it != kernels.end()); kernel = std::move(*it); } else { // TODO(hong19860320) add kernel picking according to the type of input // and output tensors VLOG(3) << "The attr '" << kKernelTypeAttr << "' not found, pick the first kernel for " << op_type; std::vector> kernels; #if defined(LITE_WITH_ARM) kernels = op->CreateKernels({Place{TARGET(kARM)}, Place{TARGET(kHost)}}); #elif defined(LITE_WITH_X86) kernels = op->CreateKernels({Place{TARGET(kX86)}, Place{TARGET(kHost)}}); #endif if (kernels.size() > 0) { kernel = std::move(kernels.front()); } else { LOG(WARNING) << "No kernels found for " << op_type; } } #ifdef LITE_WITH_OPENCL if (kernel->target() == TARGET(kOpenCL)) { std::unique_ptr ctx(new KernelContext()); (*local_ctx).As().CopySharedTo(&ctx->As()); kernel->SetContext(std::move(ctx)); } else { kernel->SetContext( ContextScheduler::Global().NewContext(kernel->target())); } #else kernel->SetContext(ContextScheduler::Global().NewContext(kernel->target())); #endif instructions_[kRootBlockIdx].emplace_back(std::move(op), std::move(kernel)); } Init(); } #ifdef LITE_WITH_CUDA void RuntimeProgram::UpdateCudaContext(cudaStream_t exec, cudaStream_t io) { for (auto& inst : instructions_) { inst.UpdateCudaContext(exec, io); } } #endif void RuntimeProgram::Run() { #ifdef LITE_WITH_PRECISION_PROFILE auto inst_precision_profiler = paddle::lite::profile::PrecisionProfiler(); std::string precision_profiler_summary = inst_precision_profiler.GetSummaryHeader(); #endif #ifdef LITE_WITH_NVTX const NVTXAnnotator& annotator = NVTXAnnotator::Global(); NVTXRangeAnnotation annotation_one_loop = annotator.AnnotateBlock(); if (annotator.IsEnabled()) { annotation_one_loop.generate(register_layer_names_.back(), lite::Color::Engine); } #endif int idx = -1; auto& insts = instructions_[kRootBlockIdx]; for (auto& inst : insts) { ++idx; #ifndef LITE_WITH_FPGA if (inst.is_feed_fetch_op()) continue; #endif #ifdef LITE_WITH_NVTX NVTXRangeAnnotation annotation = annotator.AnnotateBlock(); nvtxStringHandle_t registered_name = register_layer_names_[idx]; if (annotator.IsEnabled()) { annotation.generate(registered_name, lite::Color::Runner); } #endif #ifdef LITE_WITH_CUDA if (inst.need_sync()) { inst.Sync(); } #endif inst.Run(); #ifdef LITE_WITH_PRECISION_PROFILE #ifndef LITE_WITH_FPGA precision_profiler_summary += inst_precision_profiler.GetInstPrecision(&inst); #endif #endif // LITE_WITH_PRECISION_PROFILE } #ifdef LITE_WITH_PROFILE LOG(INFO) << "\n" << profiler_.Summary(profile::Type::kDispatch, false, 1); #endif #ifdef LITE_WITH_PRECISION_PROFILE LOG(INFO) << "\n" << precision_profiler_summary; #endif } void Program::Build(const std::shared_ptr& program_desc) { CHECK(ops_.empty()) << "Executor duplicate Build found"; // Create operators. auto block_size = program_desc->BlocksSize(); CHECK(block_size); ops_.resize(block_size); for (size_t block_idx = 0; block_idx < block_size; ++block_idx) { auto* block_desc = program_desc->GetBlock(block_idx); auto op_size = block_desc->OpsSize(); for (size_t op_idx = 0; op_idx < op_size; ++op_idx) { auto* op_desc = block_desc->GetOp(op_idx); auto op_type = op_desc->Type(); VLOG(4) << "create Op [" << op_type << "]"; auto op = LiteOpRegistry::Global().Create(op_type); CHECK(op) << "no Op found for " << op_type; if (op_type == "while") { static_cast(op.get())->SetProgramDesc( program_desc); } else if (op_type == "conditional_block") { static_cast(op.get())->SetProgramDesc( program_desc); } else if (op_type == "subgraph") { static_cast(op.get())->SetProgramDesc( program_desc); } op->Attach(*op_desc, exec_scope_); ops_[block_idx].emplace_back(std::move(op)); } } } void Program::PrepareWorkspace( const std::shared_ptr& program_desc, const std::vector& vars_to_clone) { CHECK(!exec_scope_) << "Duplicate PrepareWorkspace found"; exec_scope_ = &scope_->NewScope(); // Create Feed and Fetch var. scope_->Var("feed")->GetMutable>(); scope_->Var("fetch")->GetMutable>(); vars_.push_back("feed"); vars_.push_back("fetch"); auto VarDescType2PrecisionType = [](const lite::VarDescAPI::Type& type) -> PrecisionType { switch (type) { case lite::VarDescAPI::Type::FP32: return PRECISION(kFloat); case lite::VarDescAPI::Type::FP16: return PRECISION(kFP16); case lite::VarDescAPI::Type::INT8: return PRECISION(kInt8); case lite::VarDescAPI::Type::INT16: return PRECISION(kInt16); case lite::VarDescAPI::Type::INT32: return PRECISION(kInt32); case lite::VarDescAPI::Type::INT64: return PRECISION(kInt64); default: LOG(WARNING) << "Unable to convert var desc type(" << static_cast(type) << ") to precision type!"; return PRECISION(kUnk); } }; auto block_size = program_desc->BlocksSize(); CHECK(block_size); for (size_t block_idx = 0; block_idx < block_size; ++block_idx) { auto* block_desc = program_desc->GetBlock(block_idx); auto var_size = block_desc->VarsSize(); for (size_t var_idx = 0; var_idx < var_size; ++var_idx) { auto* var_desc = block_desc->GetVar(var_idx); const auto& var_name = var_desc->Name(); const auto& var_type = var_desc->GetType(); if (!var_desc->Persistable()) { vars_.push_back(var_name); auto* var = exec_scope_->Var(var_name); VLOG(4) << "Var " << var_name << " in block " << block_idx; VLOG(4) << " - type " << static_cast(var_type); if (var_type == lite::VarDescAPI::Type::LOD_TENSOR) { const auto& var_data_type = VarDescType2PrecisionType(var_desc->GetDataType()); if (var_data_type != PRECISION(kUnk)) { var_type_map_[var_name] = LiteType::GetTensorTy( TARGET(kUnk), var_data_type, DATALAYOUT(kUnk)); } VLOG(4) << " - data type " << static_cast(var_data_type); // Create the tensor with the shape from var desc, it's convenient to // the graph analysis in the passes, but you should resize the tensor // with the real shape before accessing its data, because the // var_shape may be [-1,3,224,224] const auto& var_shape = var_desc->GetShape(); auto* tensor = var->GetMutable(); if (tensor->dims().empty() && !var_shape.empty()) { tensor->Resize(var_shape); VLOG(4) << " - dims " << tensor->dims().repr(); } } else if (var_type == lite::VarDescAPI::Type::LOD_TENSOR_ARRAY) { var_type_map_[var_name] = LiteType::GetTensorListTy( TARGET(kUnk), PRECISION(kUnk), DATALAYOUT(kUnk)); } } else { if (var_name == "feed" || var_name == "fetch") continue; weights_.push_back(var_name); scope_->Var(var_name); } } } for (auto var_name : vars_to_clone) { exec_scope_->LocalVar(var_name); auto* tensor = scope_->Var(var_name)->GetMutable(); auto* sub_tensor = exec_scope_->Var(var_name)->GetMutable(); sub_tensor->CopyDataFrom(*tensor); } } void Instruction::Run() { #ifdef LITE_WITH_PROFILE CHECK(profiler_) << "Profiler pointer of kernel can not be nullptr. " "When LITE_WITH_PROFILE is defined, please set a " "Profiler for Instruction."; profiler_->StartTiming( profile::Type::kCreate, profile_id_, kernel_->mutable_context()); #endif CHECK(op_) << "op null"; CHECK(kernel_) << "kernel null"; if (first_epoch_) { first_epoch_ = false; CHECK(op_->CheckShape()); } if (op_->run_once() && has_run_) { return; } op_->InferShape(); kernel_->Launch(); has_run_ = true; #ifdef LITE_WITH_PROFILE if (first_epoch_for_profiler_) { kernel_->SetIsKernelTest(false); SetProfileRuntimeOpInfo(profiler_->GetOpCharacter(profile_id_)); first_epoch_for_profiler_ = false; } #endif } STL::ostream& operator<<(STL::ostream& os, const Instruction& other) { os << other.kernel_->summary() << "\t(" << other.kernel_->doc() << ")"; return os; } } // namespace lite } // namespace paddle