// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/api/cxx_api.h" #include #include #include #include #include #include #include "lite/api/paddle_use_passes.h" #include "lite/utils/io.h" namespace paddle { namespace lite { std::vector GetAllOps() { return OpLiteFactory::Global().GetAllOps(); } void Predictor::SaveModel(const std::string &dir, lite_api::LiteModelType model_type, bool record_info) { if (!program_) { GenRuntimeProgram(); } program_->SaveToProgram(program_desc_); switch (model_type) { case lite_api::LiteModelType::kProtobuf: SaveModelPb(dir, *program_->exec_scope(), *program_desc_.get(), true); break; case lite_api::LiteModelType::kNaiveBuffer: SaveModelNaive(dir, *program_->exec_scope(), *program_desc_.get()); break; default: LOG(FATAL) << "Unknown model type"; } if (record_info) { MkDirRecur(dir); SaveOpKernelInfo(dir); } } void Predictor::SaveOpKernelInfo(const std::string &model_dir) { std::set ops_info; std::set kernels_info; auto block_size = program_->block_size(); for (size_t block_idx = 0; block_idx < block_size; ++block_idx) { const auto &insts = program_->instructions(block_idx); for (auto &inst : insts) { // parse op type infomation auto op = inst.op()->op_info(); ops_info.insert(op->Type()); // parse kernel type information std::string kernel_type_str = inst.kernel()->op_type() + "," + TargetRepr(inst.kernel()->target()) + "," + PrecisionRepr(inst.kernel()->precision()) + "," + DataLayoutRepr(inst.kernel()->layout()) + "," + inst.kernel()->alias(); kernels_info.insert(kernel_type_str); } } // get souce_file name from op type and kernel type auto op2pathmap = OpKernelInfoCollector::Global().GetOp2PathDict(); auto kernel2pathmap = OpKernelInfoCollector::Global().GetKernel2PathDict(); // write used op and kernel info into files std::string opf_path = model_dir + "/" + TAILORD_OPS_LIST_NAME; std::string opf_source_path = model_dir + "/" + TAILORD_OPS_SOURCE_LIST_FILENAME; std::string kpf_path = model_dir + "/" + TAILORD_KERNELS_LIST_NAME; std::string kpf_source_path = model_dir + "/" + TAILORD_KERNELS_SOURCE_LIST_FILENAME; std::map op2path; std::FILE *opf = std::fopen(opf_path.c_str(), "w"); std::FILE *opf_source = std::fopen(opf_source_path.c_str(), "w"); std::FILE *kpf = std::fopen(kpf_path.c_str(), "w"); std::FILE *kpf_source = std::fopen(kpf_source_path.c_str(), "w"); std::vector opcompile; std::vector kernelcompile; if (nullptr == opf || nullptr == opf_source || nullptr == opf || nullptr == kpf_source) { LOG(FATAL) << "failed to create info file into: " << model_dir; } for (auto op_info = ops_info.begin(); op_info != ops_info.end(); op_info++) { fputs(op_info->c_str(), opf); fputc('\n', opf); std::string op_path = op2pathmap[*op_info]; fputs(op_path.c_str(), opf_source); fputc('\n', opf_source); } std::fclose(opf_source); std::fclose(opf); LOG(INFO) << "operators information of tailored model is stored into: " << opf_path; // write Kernel_type and Kernel_path into file for (auto kernel_info = kernels_info.begin(); kernel_info != kernels_info.end(); kernel_info++) { fputs(kernel_info->c_str(), kpf); fputc('\n', kpf); std::string kernel_path = kernel2pathmap[*kernel_info]; fputs(kernel_path.c_str(), kpf_source); fputc('\n', kpf_source); if (kernel_path == "conv_compute.cc") { fputs( "conv_depthwise.cc\nconv_direct.cc\nconv_gemmlike.cc\nconv_" "winograd.cc\n", kpf_source); } } std::fclose(kpf_source); std::fclose(kpf); LOG(INFO) << "kernels information of tailored model is stored into: " << kpf_path; } #ifndef LITE_WITH_FPGA lite::Tensor *Predictor::GetInput(size_t offset) { CHECK(input_names_.size() > offset) << "The network has " << input_names_.size() << " inputs" << ", the offset should be less than this."; auto *in_var = exec_scope_->FindVar(input_names_[offset]); CHECK(in_var) << "no fatch variable " << input_names_[offset] << " in exec_scope"; return in_var->GetMutable(); } #else lite::Tensor *Predictor::GetInput(size_t offset) { auto *_feed_list = exec_scope_->FindVar("feed"); CHECK(_feed_list) << "no feed variable in exec_scope"; auto *feed_list = _feed_list->GetMutable>(); if (offset >= feed_list->size()) { feed_list->resize(offset + 1); } return &feed_list->at(offset); } #endif // get inputs names std::vector Predictor::GetInputNames() { return input_names_; } // get outputnames std::vector Predictor::GetOutputNames() { return output_names_; } // get param names std::vector Predictor::GetParamNames() { return exec_scope_->AttributeVarNames(); } // append the names of inputs and outputs into input_names_ and output_names_ void Predictor::PrepareFeedFetch() { if (!program_) { GenRuntimeProgram(); } std::vector feeds; std::vector fetchs; const auto &insts = program_->instructions(kRootBlockIdx); for (auto &inst : insts) { const auto &op = inst.op()->op_info(); if (op->Type() == "feed") { feeds.push_back(op); } else if (op->Type() == "fetch") { fetchs.push_back(op); } } input_names_.resize(feeds.size()); output_names_.resize(fetchs.size()); for (size_t i = 0; i < feeds.size(); i++) { input_names_[feeds[i]->GetAttr("col")] = feeds[i]->Output("Out").front(); } for (size_t i = 0; i < fetchs.size(); i++) { output_names_[fetchs[i]->GetAttr("col")] = fetchs[i]->Input("X").front(); } } #ifndef LITE_WITH_FPGA const lite::Tensor *Predictor::GetOutput(size_t offset) const { CHECK(output_names_.size() > offset) << "The network has " << output_names_.size() << " outputs" << ", the offset should be less than this."; const std::string name = output_names_.at(offset); auto *out_var = exec_scope_->FindVar(name); CHECK(out_var) << "no fatch variable " << name << " in exec_scope"; return out_var->GetMutable(); } std::vector Predictor::GetOutputs() const { std::vector outputs; size_t out_size = output_names_.size(); for (size_t i = 0; i < out_size; i++) { const std::string name = output_names_.at(i); outputs.push_back(GetTensor(name)); } return outputs; } #else const lite::Tensor *Predictor::GetOutput(size_t offset) const { auto *_fetch_list = exec_scope_->FindVar("fetch"); CHECK(_fetch_list) << "no fatch variable in exec_scope"; auto &fetch_list = *_fetch_list->GetMutable>(); CHECK_LT(offset, fetch_list.size()) << "offset " << offset << " overflow"; return &fetch_list.at(offset); } std::vector Predictor::GetOutputs() const { auto *_fetch_list = exec_scope_->FindVar("fetch"); CHECK(_fetch_list) << "no fatch variable in exec_scope"; auto &fetch_list = *_fetch_list->GetMutable>(); std::vector outputs; for (auto out : fetch_list) { outputs.push_back(&out); } return outputs; } #endif const cpp::ProgramDesc &Predictor::program_desc() const { return *program_desc_.get(); } const RuntimeProgram &Predictor::runtime_program() const { return *program_; } void Predictor::Build(const lite_api::CxxConfig &config, const std::vector &valid_places, const std::vector &passes, lite_api::LiteModelType model_type) { const std::string &model_path = config.model_dir(); const std::string &model_file = config.model_file(); const std::string ¶m_file = config.param_file(); const bool model_from_memory = config.model_from_memory(); if (model_from_memory) { LOG(INFO) << "Load model from memory."; } else { LOG(INFO) << "Load model from file."; } Build(model_path, model_file, param_file, valid_places, passes, model_type, model_from_memory); } void Predictor::Build(const std::string &model_path, const std::string &model_file, const std::string ¶m_file, const std::vector &valid_places, const std::vector &passes, lite_api::LiteModelType model_type, bool model_from_memory) { switch (model_type) { case lite_api::LiteModelType::kProtobuf: { bool combined_param = false; if (!model_file.empty() && !param_file.empty()) { combined_param = true; } LoadModelPb(model_path, model_file, param_file, scope_.get(), program_desc_.get(), combined_param, model_from_memory); } break; case lite_api::LiteModelType::kNaiveBuffer: CHECK(!model_path.empty()) << "NaiveBuffer backend only supported combined param"; LoadModelNaiveFromFile(model_path, scope_.get(), program_desc_.get()); break; default: LOG(FATAL) << "Unknown model type"; } Build(program_desc_, valid_places, passes); } void Predictor::Build(const std::shared_ptr &program_desc, const std::vector &valid_places, const std::vector &passes) { program_desc_ = program_desc; // `inner_places` is used to optimize passes std::vector inner_places = valid_places; for (auto &valid_place : valid_places) { if (valid_place.target == TARGET(kOpenCL)) continue; inner_places.emplace_back( Place(TARGET(kHost), valid_place.precision, valid_place.layout)); } // Analysis whether the modle is quantized. // For quantized model, add place(arm, int8) to inner_places const std::vector quant_dequant_op = { "fake_quantize_abs_max", "fake_quantize_range_abs_max", "fake_quantize_moving_average_abs_max", "fake_quantize_dequantize_moving_average_abs_max", "fake_dequantize_max_abs", "fake_channel_wise_dequantize_max_abs"}; bool is_quantized_model = false; for (size_t i = 0; i < program_desc_->BlocksSize() && !is_quantized_model; ++i) { auto *block_desc = program_desc_->GetBlock(i); for (size_t j = 0; j < block_desc->OpsSize() && !is_quantized_model; ++j) { auto *op_desc = block_desc->GetOp(j); std::string op_type = op_desc->Type(); if (std::find(quant_dequant_op.begin(), quant_dequant_op.end(), op_type) != quant_dequant_op.end()) { is_quantized_model = true; } } } if (is_quantized_model) { inner_places.insert(inner_places.begin(), Place{TARGET(kARM), PRECISION(kInt8)}); } Program program(program_desc_, scope_, inner_places); valid_places_ = inner_places; core::KernelPickFactor factor; factor.ConsiderTarget(); factor.ConsiderPrecision(); factor.ConsiderDataLayout(); optimizer_.Run(std::move(program), inner_places, factor, passes); exec_scope_ = optimizer_.exec_scope(); PrepareFeedFetch(); } void Predictor::GenRuntimeProgram() { program_ = optimizer_.GenRuntimeProgram(); CHECK_EQ(exec_scope_, program_->exec_scope()); program_generated_ = true; #ifdef LITE_WITH_CUDA if (!cuda_use_multi_stream_) { program_->UpdateCudaContext(cuda_exec_stream_, cuda_io_stream_); } #endif } const lite::Tensor *Predictor::GetTensor(const std::string &name) const { auto *var = exec_scope_->FindVar(name); CHECK(var) << "no variable named with " << name << " in exec_scope"; return &var->Get(); } lite::Tensor *Predictor::GetMutableTensor(const std::string &name) { auto *var = exec_scope_->FindVar(name); CHECK(var) << "no variable named with " << name << " in exec_scope"; return var->GetMutable(); } // get input by name lite::Tensor *Predictor::GetInputByName(const std::string &name) { auto element = std::find(input_names_.begin(), input_names_.end(), name); if (element == input_names_.end()) { LOG(ERROR) << "Model do not have input named with: [" << name << "], model's inputs include:"; for (size_t i = 0; i < input_names_.size(); i++) { LOG(ERROR) << "[" << input_names_[i] << "]"; } return nullptr; } else { int position = std::distance(input_names_.begin(), element); return GetInput(position); } } // #ifdef LITE_WITH_TRAIN // void Predictor::FeedVars(const std::vector &tensors) { // auto var = scope_->FindVar("feed"); // auto &feed_list = *(var->GetMutable>()); // feed_list.resize(tensors.size()); // for (size_t i = 0; i < tensors.size(); ++i) // feed_list[i].ShareDataWith(tensors[i]); // } // #endif } // namespace lite } // namespace paddle