// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/fpga/yolo_box_compute.h" #include #include "lite/backends/arm/math/funcs.h" #include "lite/core/tensor.h" namespace paddle { namespace lite { namespace kernels { namespace fpga { void YoloBoxCompute::PrepareForRun() { auto& param = Param(); lite::Tensor* X = param.X; lite::Tensor* ImgSize = param.ImgSize; lite::Tensor* Boxes = param.Boxes; lite::Tensor* Scores = param.Scores; Boxes->mutable_data(); Scores->mutable_data(); zynqmp::YoloBoxParam& yolobox_param = pe_.param(); yolobox_param.input = X->ZynqTensor(); yolobox_param.imgSize = ImgSize->ZynqTensor(); yolobox_param.outputBoxes = Boxes->ZynqTensor(); yolobox_param.outputScores = Scores->ZynqTensor(); yolobox_param.downsampleRatio = param.downsample_ratio; yolobox_param.anchors = param.anchors; yolobox_param.classNum = param.class_num; yolobox_param.confThresh = param.conf_thresh; pe_.init(); pe_.apply(); } void YoloBoxCompute::Run() { pe_.dispatch(); zynqmp::YoloBoxParam& yolobox_param = pe_.param(); yolobox_param.imgSize->saveToFile("img_size", true); // exit(-1); yolobox_param.outputBoxes->saveToFile("yolo_boxes", true); yolobox_param.outputScores->saveToFile("yolo_scores", true); } } // namespace fpga } // namespace kernels } // namespace lite } // namespace paddle // REGISTER_LITE_KERNEL(yolo_box, // kFPGA, // kFP16, // kNHWC, // paddle::lite::kernels::fpga::YoloBoxCompute, // def) // .BindInput("X", {LiteType::GetTensorTy(TARGET(kFPGA), // PRECISION(kFP16), // DATALAYOUT(kNHWC))}) // .BindInput("ImgSize", // {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt32))}) // .BindOutput("Boxes", {LiteType::GetTensorTy(TARGET(kARM))}) // .BindOutput("Scores", {LiteType::GetTensorTy(TARGET(kARM))}) // .Finalize();