// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include "lite/core/program.h" #include "lite/core/tensor.h" namespace paddle { namespace lite { #define FPGA_PRINT_TENSOR class Debugger { public: static Debugger& get_instance() { static Debugger s_instance; return s_instance; } void registerOutput(std::string op_type, zynqmp::Tensor* tensor) { if (op_config[op_type]) { // tensor->saveToFile(op_type, true); } } void tick(std::string key) { float value = 0; if (tick_tock_map.count(key) > 0) { value += tick_tock_map[key] = value; } } void tock(std::string key) {} void setEnable(bool en) { enabled_ = en; } private: bool enabled_ = false; std::unordered_map op_config; std::unordered_map tick_tock_map; Debugger() { op_config["concat"] = true; op_config["pooling"] = true; op_config["conv"] = true; op_config["dropout"] = true; op_config["dwconv"] = true; op_config["ew_add"] = true; op_config["ew_mul"] = true; op_config["crop"] = true; op_config["feed"] = true; op_config["fetch"] = true; op_config["fc"] = true; op_config["mul"] = true; op_config["boxes"] = true; op_config["scores"] = true; op_config["nms"] = true; op_config["pb_boxes"] = true; op_config["pb_variances"] = true; op_config["reshape"] = true; op_config["softmax"] = true; op_config["split"] = true; } }; inline void chw_to_hwc(Tensor* t, float* dst) { int num = t->dims()[0]; int channel = t->dims()[1]; int height = 1; int width = 1; if (t->dims().size() > 2) { height = t->dims()[2]; } if (t->dims().size() > 3) { width = t->dims()[3]; } const float* chw_data = t->data(); float* hwc_data = dst; int chw = channel * height * width; int wc = width * channel; int index = 0; for (int n = 0; n < num; n++) { for (int c = 0; c < channel; c++) { for (int h = 0; h < height; h++) { for (int w = 0; w < width; w++) { hwc_data[n * chw + h * wc + w * channel + c] = chw_data[index]; index++; } } } } } inline void read_from_file(lite::Tensor* t, const std::string& path) { std::ifstream file_stream; file_stream.open(path); if (!file_stream) { return; } float* data = t->mutable_data(); int num = t->numel(); for (int i = 0; i < num; ++i) { float value = 0; file_stream >> value; data[i] = value; } } inline void save_float(float* data, const std::string& name, int len) { static int counter = 0; std::string old_string = paddle::lite::to_string(counter); std::string new_string = std::string(3 - old_string.length(), '0') + old_string; std::string file = "arm_" + new_string + name; counter++; std::ofstream ofs; ofs.open(file); for (int i = 0; i < len; i++) { float value = data[i]; ofs << value << std::endl; } ofs.close(); } inline void save_tensor(lite::Tensor* t, const std::string& name, bool convert = true) { float* data = const_cast(t->data()); float* dst = new float[t->numel()]; if (convert) { chw_to_hwc(t, dst); data = dst; } save_float(data, name, t->numel()); delete[] dst; } inline void save_tensor(const lite::Tensor* t, const std::string& name, bool convert = true) { float* data = const_cast(t->data()); float* dst = new float[t->numel()]; if (convert) { chw_to_hwc(const_cast(t), dst); data = dst; } save_float(data, name, t->numel()); delete[] dst; } } // namespace lite } // namespace paddle