// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/xpu/reduce_sum_compute.h" #include #include "lite/core/op_registry.h" namespace paddle { namespace lite { namespace kernels { namespace xpu { void ReduceSumCompute::Run() { auto& param = Param(); auto& ctx = this->ctx_->As(); const float* input = param.x->data(); float* output = param.output->mutable_data(TARGET(kXPU)); bool reduce_all = param.reduce_all; if (reduce_all) { int input_len = param.x->numel(); int r = xdnn::sum(ctx.GetRawContext(), input, output, input_len); CHECK_EQ(r, 0); } else { auto x_dims = param.x->dims(); int x_rank = x_dims.size(); auto reduce_dim = param.dim; auto rdim = reduce_dim.size(); std::vector idims; for (int i = 0; i < x_rank; i++) { idims.push_back(x_dims[i]); } auto type = xdnn::ReduceOp::REDUCE_SUM; int r = xdnn::reduce(ctx.GetRawContext(), input, output, idims.data(), x_rank, reduce_dim.data(), rdim, type); CHECK_EQ(r, 0); } } } // namespace xpu } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(reduce_sum, kXPU, kFloat, kNCHW, paddle::lite::kernels::xpu::ReduceSumCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kXPU))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kXPU))}) .Finalize();