/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #ifdef FUSION_FC_OP #pragma once #include #include "operators/math/math_function.h" #include "operators/op_param.h" namespace paddle_mobile { namespace operators { template void FusionFcCompute(const FusionFcParam ¶m) { const Tensor *input_x = param.InputX(); const Tensor *input_y = param.InputY(); Tensor *input_z = param.InputZ(); S *input_z_data = input_z->data(); int axis = param.Axis(); Tensor *out = param.Out(); // int m = out->dims()[0]; // int n = out->dims()[1]; auto *out_data = out->mutable_data

(); float alpha = 1.0f; float beta = 1.0f; const Tensor x_matrix = input_x->dims().size() > 2 ? framework::ReshapeToMatrix(*input_x, param.XNumColDims()) : *input_x; const Tensor y_matrix = input_y->dims().size() > 2 ? framework::ReshapeToMatrix(*input_y, param.YNumColDims()) : *input_y; auto out_dim = out->dims(); if (out_dim.size() != 2) { out->Resize({x_matrix.dims()[0], y_matrix.dims()[1]}); } PADDLE_MOBILE_ENFORCE(out_dim.size() == 2, " out_dim.size must be 2."); PADDLE_MOBILE_ENFORCE(input_z->dims().size() == 1, "inpu_z size must be 1"); PADDLE_MOBILE_ENFORCE(out_dim[1] == input_z->dims()[0], " out_dim.size must be 2."); axis = (axis == -1 ? out_dim.size() - input_z->dims().size() : axis); PADDLE_MOBILE_ENFORCE(axis == 1, " to fit broadcast, axis = 1. "); if (std::is_same::value) { #ifdef FUSION_FC_INT8_OP alpha = param.InputScale()->data()[0]; beta = 0.0f; math::matmul(x_matrix, false, y_matrix, false, alpha, out, beta, false, input_z_data, true); #endif } else { // bias_data的维度和out的第二个维度一致 int64_t classes = input_z->numel(); for (int i = 0; i < out_dim[0]; i++) { memory::Copy(out_data + i * classes, input_z_data, sizeof(float) * classes); } math::matmul(x_matrix, false, y_matrix, false, alpha, out, beta, false); } PADDLE_MOBILE_ENFORCE(out_dim.size() == 2, " out_dim.size must be 2."); // if (out_dim.size() != 2) { // out->Resize(out_dim); // } } } // namespace operators } // namespace paddle_mobile #endif