// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/xpu/sequence_unpad_compute.h" #include "lite/backends/xpu/xpu_header_sitter.h" #include "lite/core/op_registry.h" namespace paddle { namespace lite { namespace kernels { namespace xpu { void SequenceUnpadCompute::PrepareForRun() { lod_xpu_guard_ = TargetWrapperXPU::MallocScratchPad( XPU_MAX_LOD_SIZE * sizeof(int), false /* use_l3 */); lod_cpu_.reserve(XPU_MAX_LOD_SIZE); } void SequenceUnpadCompute::Run() { auto& param = this->template Param(); auto& ctx = this->ctx_->template As(); auto x_dims = param.X->dims(); auto len_dims = param.Length->dims(); // XXX(miaotianxiang): Target of tensor |Length| is |kHost|. auto* seq_len_ptr = param.Length->template data(); int64_t batch_size = len_dims[0]; std::vector out_lod0(batch_size + 1, 0); for (int64_t i = 0; i < batch_size; ++i) { out_lod0[i + 1] = out_lod0[i] + seq_len_ptr[i]; } paddle::lite::LoD out_lod; out_lod.push_back(out_lod0); int64_t out_dim0 = out_lod0.back(); std::vector out_dims{out_dim0}; if (x_dims.size() == 2) { out_dims.push_back(1); } else { for (size_t i = 2; i < x_dims.size(); ++i) { out_dims.push_back(x_dims[i]); } } param.Out->Resize(out_dims); param.Out->set_lod(out_lod); lod_cpu_ = {0}; for (int64_t i = 0; i < batch_size; ++i) { int offset = lod_cpu_.back() + static_cast(param.Length->data()[i]); lod_cpu_.push_back(offset); } lod_xpu_guard_->Reserve((batch_size + 1) * sizeof(int)); TargetWrapperXPU::MemcpySync(lod_xpu_guard_->addr_, lod_cpu_.data(), (batch_size + 1) * sizeof(int), IoDirection::HtoD); int dim = param.Out->numel() / out_dim0; int r = xdnn::sequence_unpad( ctx.GetRawContext(), /* ctx */ param.X->data(), /* pad_data */ param.Out->mutable_data(TARGET(kXPU)), /* seq_data */ reinterpret_cast(lod_xpu_guard_->addr_), /* sequence */ param.X->dims()[1], /* pad_seq_len */ batch_size, /* batch_size */ dim /* dim */); CHECK_EQ(r, 0); } } // namespace xpu } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(sequence_unpad, kXPU, kFloat, kNCHW, paddle::lite::kernels::xpu::SequenceUnpadCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kXPU))}) .BindInput("Length", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kInt64))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kXPU))}) .Finalize();