// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/xpu/sequence_pool_compute.h" #include #include "lite/backends/xpu/xpu_header_sitter.h" #include "lite/core/op_registry.h" namespace paddle { namespace lite { namespace kernels { namespace xpu { void XPUSequencePoolCompute::PrepareForRun() { lod_xpu_guard_ = TargetWrapperXPU::MallocScratchPad(64 * sizeof(int)); lod_cpu.reset(new int[64]); } void XPUSequencePoolCompute::Run() { auto& param = this->template Param(); auto& ctx = this->ctx_->template As(); auto* in = param.X; auto* out = param.Out; std::string pool_type_str = param.pool_type; auto dims = in->dims(); auto lod = in->lod(); dims[0] = lod[0].size() - 1; xdnn::Pooling_t pool_type = xdnn::Pooling_t::MAX_WITHOUT_INDEX; if (pool_type_str == "MAX") { } else if (pool_type_str == "LAST") { pool_type = xdnn::Pooling_t::LAST; } else { CHECK(false); } int num_seq = out->dims()[0]; int dim = out->numel() / num_seq; auto in_lod = in->lod()[0]; for (size_t i = 0; i < in_lod.size(); ++i) { lod_cpu[i] = in_lod[i]; } int* lod_xpu = reinterpret_cast(lod_xpu_guard_->addr_); xpu_memcpy(lod_xpu, lod_cpu.get(), in_lod.size() * sizeof(int), XPUMemcpyKind::XPU_HOST_TO_DEVICE); int r = xdnn::sequence_pooling_forward(ctx.GetRawContext(), pool_type, num_seq, lod_xpu, dim, in->data(), nullptr /* index */, out->mutable_data(TARGET(kXPU))); CHECK_EQ(r, 0); } } // namespace xpu } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(sequence_pool, kXPU, kFloat, kNCHW, paddle::lite::kernels::xpu::XPUSequencePoolCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kXPU))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kXPU))}) .BindOutput("MaxIndex", {LiteType::GetTensorTy(TARGET(kXPU))}) .Finalize();