// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "lite/kernels/bm/bridges/graph.h" #include "lite/kernels/bm/bridges/utility.h" #include "lite/kernels/npu/bridges/registry.h" namespace paddle { namespace lite { namespace subgraph { namespace bm { int BatchNormConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto scope = op->scope(); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto unique_op_name = lite::subgraph::bm::UniqueName(op_type); // input auto x_var_name = op_info->Input("X").front(); auto x = scope->FindVar(x_var_name)->GetMutable(); auto x_dims = x->dims(); const int64_t* x_shape_data = const_cast(&x_dims.data()[0]); std::vector i_x_shape_data(x_dims.size()); for (size_t i = 0; i < x_dims.size(); i++) { i_x_shape_data[i] = static_cast(x_shape_data[i]); } int channel_size = x_dims[1]; auto scale_var_name = op_info->Input("Scale").front(); auto scale = scope->FindVar(scale_var_name)->GetMutable(); auto bias_var_name = op_info->Input("Bias").front(); auto bias = scope->FindVar(bias_var_name)->GetMutable(); auto mean_var_name = op_info->Input("Mean").front(); auto mean = scope->FindVar(mean_var_name)->GetMutable(); auto variance_var_name = op_info->Input("Variance").front(); auto variance = scope->FindVar(variance_var_name)->GetMutable(); // output auto output_var_name = op_info->Output("Y").front(); auto output = scope->FindVar(output_var_name)->GetMutable(); auto output_dims = output->dims(); const int64_t* output_shape_data = const_cast(&output_dims.data()[0]); std::vector i_output_shape_data(output_dims.size()); for (size_t i = 0; i < output_dims.size(); i++) { i_output_shape_data[i] = static_cast(output_shape_data[i]); } auto epsilon = op_info->GetAttr("epsilon"); auto unique_bn_out_name = lite::subgraph::bm::UniqueName("batch_norm_out"); auto* scale_data = scale->mutable_data(); auto* bias_data = bias->mutable_data(); auto* mean_data = mean->mutable_data(); auto* variance_data = variance->mutable_data(); float* new_bias = static_cast(malloc(bias->memory_size())); float* new_scale = static_cast(malloc(scale->memory_size())); CHECK(new_bias != nullptr); CHECK(new_scale != nullptr); for (int c = 0; c < channel_size; c++) { float inv_scale = 1.f / (std::sqrt(variance_data[c] + epsilon)); new_bias[c] = bias_data[c] - inv_scale * scale_data[c] * mean_data[c]; new_scale[c] = inv_scale * scale_data[c]; } const int input_num = 1; int** shape = new int*[input_num]; int* dim = new int[input_num]; const char** name = new const char*[input_num]; name[0] = static_cast(x_var_name.c_str()); dim[0] = x_dims.size(); shape[0] = &i_x_shape_data[0]; add_scale_layer(graph->GetCompilerHandle(), input_num, shape, dim, name, const_cast(&i_output_shape_data[0]), output_dims.size(), static_cast(output_var_name.c_str()), static_cast(unique_op_name.c_str()), static_cast(new_scale), static_cast(new_bias), 1, 1, 1); free(new_scale); free(new_bias); delete[] shape; delete[] name; delete[] dim; graph->AddNode(output_var_name); return SUCCESS; } } // namespace bm } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(batch_norm, kBM, paddle::lite::subgraph::bm::BatchNormConverter);