// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include "lite/kernels/bm/bridges/graph.h" #include "lite/kernels/bm/bridges/utility.h" #include "lite/kernels/npu/bridges/registry.h" namespace paddle { namespace lite { namespace subgraph { namespace bm { float* compute_elementwise_both_const(OpLite* op) { auto op_info = op->op_info(); auto scope = op->scope(); auto op_type = op_info->Type(); // input auto x_var_name = op_info->Input("X").front(); auto x = scope->FindVar(x_var_name)->GetMutable(); auto x_dims = x->dims(); auto y_var_name = op_info->Input("Y").front(); auto y = scope->FindVar(y_var_name)->GetMutable(); auto y_dims = y->dims(); // output auto output_var_name = op_info->Output("Out").front(); auto output = scope->FindVar(output_var_name)->GetMutable(); auto output_dims = output->dims(); float* cpu_data = static_cast(malloc(sizeof(float) * output->data_size())); CHECK(cpu_data != nullptr); CHECK_EQ(x_dims.size(), y_dims.size()); const float* y_data = const_cast(y->mutable_data()); const float* x_data = const_cast(x->mutable_data()); if (op_type == "elementwise_mul") { for (size_t i = 0; i < output->data_size(); i++) { cpu_data[i] = x_data[i] * y_data[i]; } } else if (op_type == "elementwise_add") { for (size_t i = 0; i < output->data_size(); i++) { cpu_data[i] = x_data[i] + y_data[i]; } } else if (op_type == "elementwise_sub") { for (size_t i = 0; i < output->data_size(); i++) { cpu_data[i] = x_data[i] - y_data[i]; } } else if (op_type == "elementwise_div") { for (size_t i = 0; i < output->data_size(); i++) { cpu_data[i] = x_data[i] / y_data[i]; } } return cpu_data; } int ElementwiseConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto scope = op->scope(); auto op_info = op->op_info(); auto op_type = op_info->Type(); // input const int input_num = 2; int** shape = new int*[input_num]; int* dim = new int[input_num]; const char** name = new const char*[input_num]; auto x_var_name = op_info->Input("X").front(); auto x = scope->FindVar(x_var_name)->GetMutable(); auto x_dims = x->dims(); name[0] = static_cast(x_var_name.c_str()); dim[0] = x_dims.size(); std::vector i_x_shape_data(x_dims.size()); for (size_t i = 0; i < x_dims.size(); i++) { i_x_shape_data[i] = static_cast(x_dims[i]); } shape[0] = &i_x_shape_data[0]; bool x_is_const = !graph->HasNode(x_var_name); auto y_var_name = op_info->Input("Y").front(); auto y = scope->FindVar(y_var_name)->GetMutable(); auto y_dims = y->dims(); name[1] = static_cast(y_var_name.c_str()); dim[1] = y_dims.size(); std::vector i_y_shape_data(y_dims.size()); for (size_t i = 0; i < y_dims.size(); i++) { i_y_shape_data[i] = static_cast(y_dims[i]); } shape[1] = &i_y_shape_data[0]; bool y_is_const = !graph->HasNode(y_var_name); // output auto output_var_name = op_info->Output("Out").front(); auto output = scope->FindVar(output_var_name)->GetMutable(); auto output_dims = output->dims(); const int64_t* output_shape_data = const_cast(&output_dims.data()[0]); std::vector i_output_shape_data(output_dims.size()); for (size_t i = 0; i < output_dims.size(); i++) { i_output_shape_data[i] = static_cast(output_shape_data[i]); } auto axis = op_info->GetAttr("axis"); int op_code{-1}; if (op_type == "elementwise_mul") { op_code = BINARY_MUL; } else if (op_type == "elementwise_add") { op_code = BINARY_ADD; } else if (op_type == "elementwise_sub") { op_code = BINARY_SUB; } else if (op_type == "elementwise_div") { op_code = BINARY_DIV; } else { LOG(FATAL) << "UNSUPPORTED ELTWISE OPERATION: " << op_type; } const float* y_data = const_cast(y->mutable_data()); const float* x_data = const_cast(x->mutable_data()); auto unique_op_name = lite::subgraph::bm::UniqueName("expand_ndims"); std::vector i_expand_shape_data(3); if (x_is_const && y_is_const) { float* cpu_data = compute_elementwise_both_const(op); bm_add_const_tensor(graph->GetCompilerHandle(), static_cast(output_var_name.c_str()), const_cast(&i_output_shape_data[0]), output_dims.size(), static_cast(DTYPE_FP32), static_cast(cpu_data)); } else { if (y_is_const) { if (dim[0] == dim[1] || 2 == dim[0]) { bm_add_const_tensor(graph->GetCompilerHandle(), name[1], shape[1], dim[1], static_cast(DTYPE_FP32), static_cast(y_data)); } else if (1 == dim[1] && 1 == axis) { add_expand_ndims_layer( graph->GetCompilerHandle(), name[1], shape[1], dim[1], static_cast(y_data), -1, 2, static_cast(unique_op_name.c_str())); name[1] = static_cast(unique_op_name.c_str()); dim[1] = 3; i_expand_shape_data[0] = i_y_shape_data[0]; i_expand_shape_data[1] = 1; i_expand_shape_data[2] = 1; shape[1] = &i_expand_shape_data[0]; y_data = nullptr; } } add_binary_layer_v2(graph->GetCompilerHandle(), name[0], shape[0], dim[0], 0, static_cast(x_data), name[1], shape[1], dim[1], 0, static_cast(y_data), static_cast(output_var_name.c_str()), op_code); } delete[] shape; delete[] name; delete[] dim; graph->AddNode(output_var_name); return SUCCESS; } } // namespace bm } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(elementwise_add, kBM, paddle::lite::subgraph::bm::ElementwiseConverter); REGISTER_SUBGRAPH_BRIDGE(elementwise_mul, kBM, paddle::lite::subgraph::bm::ElementwiseConverter); REGISTER_SUBGRAPH_BRIDGE(elementwise_sub, kBM, paddle::lite::subgraph::bm::ElementwiseConverter); REGISTER_SUBGRAPH_BRIDGE(elementwise_div, kBM, paddle::lite::subgraph::bm::ElementwiseConverter);