/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #ifdef CONV_TRANSPOSE #pragma once #include #include #include "framework/operator.h" #include "operators/kernel/conv_transpose_kernel.h" namespace paddle_mobile { namespace operators { template class ConvOpTranspose : public framework::OperatorWithKernel< DeviceType, ConvTransposeParam, operators::ConvTransposeKernel> { public: ConvOpTranspose(const std::string &type, const VariableNameMap &inputs, const VariableNameMap &outputs, const framework::AttributeMap &attrs, std::shared_ptr scope) : framework::OperatorWithKernel< DeviceType, ConvTransposeParam, operators::ConvTransposeKernel>( type, inputs, outputs, attrs, scope) {} void InferShape() const { auto input = this->param_.Input(); auto in_dims = input->dims(); auto filter = this->param_.Filter(); auto filter_dims = filter->dims(); std::vector strides = this->param_.Strides(); std::vector paddings = this->param_.Paddings(); std::vector dilations = this->param_.Dilations(); int groups = this->param_.Groups(); PADDLE_MOBILE_ENFORCE( in_dims.size() == 4 || in_dims.size() == 5, "ConvTransposeOp intput should be 4-D or 5-D tensor."); PADDLE_MOBILE_ENFORCE( in_dims.size() == filter_dims.size(), "ConvTransposeOp input dimension and filter dimension " "should be the same."); PADDLE_MOBILE_ENFORCE( in_dims.size() - strides.size() == 2U, "ConvTransposeOp input dimension and strides dimension should " "be consistent."); PADDLE_MOBILE_ENFORCE(paddings.size() == strides.size(), "ConvTransposeOp paddings dimension and strides " "dimension should be the same."); PADDLE_MOBILE_ENFORCE(paddings.size() == dilations.size(), "ConvTransposeOp paddings dimension and dilations " "dimension should be the same."); PADDLE_MOBILE_ENFORCE( in_dims[1] == filter_dims[0], "In ConvTransposeOp, The number of input channels should " "be equal to the number of filter's channels."); std::vector output_shape({in_dims[0], filter_dims[1] * groups}); for (size_t i = 0; i < strides.size(); ++i) { auto filter_extent = dilations[i] * (filter_dims[i + 2] - 1) + 1; output_shape.push_back((in_dims[i + 2] - 1) * strides[i] - 2 * paddings[i] + filter_extent); } this->param_.Output()->Resize(framework::make_ddim(output_shape)); } private: }; } // namespace operators } // namespace paddle_mobile #ifdef PADDLE_MOBILE_CPU USE_OP_CPU(conv2d_transpose); #endif #ifdef PADDLE_MOBILE_MALI_GPU USE_OP_MALI_GPU(conv2d_transpose); #endif #ifdef PADDLE_MOBILE_FPGA USE_OP_FPGA(conv2d_transpose); #endif #endif